Feb 01, 2024

Public workspaceTn5-Duplex-Sequencing (Tn5-Duplex-Seq) for low-input single-molecule variant detection

  • 1Dept. of Neurology;
  • 2Boston Children's Hospital;
  • 3Harvard Medical School. Boston.MA.02115;
  • 4Dept. of Pediatrics;
  • 5Division of Genetics and genomics
Open access
Protocol CitationDiane Shao, Nazia Hilal, Sangita Choudhury 2024. Tn5-Duplex-Sequencing (Tn5-Duplex-Seq) for low-input single-molecule variant detection. protocols.io https://dx.doi.org/10.17504/protocols.io.6qpvr3nbzvmk/v1
Manuscript citation:

CITATION
Xing D, Tan L, Chang CH, Li H, Xie XS (2021). Accurate SNV detection in single cells by transposon-based whole-genome amplification of complementary strands..

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License,  which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Protocol status: Working
We use this protocol and it's working
Created: January 31, 2024
Last Modified: February 01, 2024
Protocol Integer ID: 94434
Keywords: Duplex-sequencing technology, Tn5-duplex-sequencing, Somatic mutations, single nucleotide variants (SNVs), variation calling, copy number, variant allele frequency (VAF) analysis
Funders Acknowledgement:
NIH
Grant ID: 5UG3NS132144-02
Abstract
DNA mutations are the inevitable consequences of errors that arise during replication-repair of DNA damage as well as aging and disease progression. Because of their random and infrequent occurrence, quantification, and characterization of DNA mutations in the genome of somatic cells have been difficult. These mutations in DNA drive genetic diversity, alter gene function, define evolutionary trajectories, and provide targets for precision medicine and diagnostics. It is crucial to detect mutations across a wide range of abundance, i.e., variant allele frequency (VAF). Detecting low-abundance mutations (e.g., <0.1–1% VAF or in individual cells) is important for understanding human embryonic development, somatic mosaicism, and clonal hematopoiesis and uncovering pathogenic variants. Altogether somatic mutations provide important and unique insights into the biology of complex diseases. To decipher the causal inference, we must build robust genetic maps of somatic evolution in health and disease. The recent advent of duplex consensus sequencing has heralded a new generation of accuracy. However, multiple techniques focus on targeted areas of the genome (Twin Strand Biosciences) or are limited to restriction sites (Nanoseq), limiting their application to comprehensive somatic variant characterization. Furthermore, fragmentation of the genome and standard A-tailing and ligation creates errors (BotseqS, CODEC). Ligation of duplex strands for efficient sequencing has proven promising, though in practice requires complex molecular structures (Pro-Seq, CODEC) which have been observed to frequently result in incorrectly paired duplexes (CODEC). To enable comprehensive variant detection by next-generation DNA sequencing, we propose an innovative, accessible, and highly accurate Tn5 transposase-based duplex-sequencing technology (Tn5-duplex-seq) where complementary strands of DNA could be labeled at the molecular level in a single-tube reaction; thus, identifying single nucleotide variants (SNVs) from single-molecules of DNA regardless of starting from single cells or pooled cell/DNA input. The conceptual basis of the protocol comes from META-CS (Xing et al.2021), a Tn5 based aproach optimized for single-cell whole genome amplification. We find that modifications of this approach to include flexible input and the sequencing strategy to optimize cost per variant detection enables great flexibility for all low-input applications.
Tn5-duplex-seq approach offers several benefits over other duplex approaches including.

(1) preservation of original template molecules by utilizing 16 unique sequences (Compared to the loss of 50% of molecules due to intramolecular symmetry during TN5-based Nextera library preparation)
(2) accuracy by eliminating the requirement for A-tailing
(3) efficiency of duplex capture through specifying input
(4) accessibility by using standard reagents and oligonucleotide preparations
(5) distinction between double-stranded SNVs and single-stranded lesions.
Our method enables library preparation for short-read sequencing. Downstream analysis enables accurate and high-throughput SNV/indel and copy number analysis.
Guidelines
Optimization of proteinase K concentration for Step 1:
As different cell types may vary in the degree of chromatin condensation and material, we recommend titration of proteinase K at 0.5X, 1X, 5X, 10X our recommended concentration. The final library yield will indicate the optimal degree of digestion. In particular, this current protocol is optimized for nuclei or extracted DNA, and whole cells will likely require a higher concentration.

Expected yield and curve prior to selection for 50 cells (Note: can skip this visualization step for low yields):
ZymoClean 200ul binding buffer + 50ul reaction. Elute in 15ul TE. Run on HS Bioanalyzer.
Yield 4-8ng/ul.

Sequencing suggestion:
Ideally, part A, and B should all be sequenced separately to avoid the fragment length bias of the Illumina sequencer and to recover the most from the single-cell genome.
For cost consideration, part A alone can be sequenced on NovaSeq X Plus 10B (2x150bp) , with a 20% PhiX spike-in, which should be sufficient for determining the single-cell mutation rate.
Protocol materials
ReagentZymo DNA Clean & Concentrator Kit Zymo ResearchCatalog #D4014
Step 1
ReagentPBS Invitrogen - Thermo FisherCatalog #2610807
Step 1
ReagentAmpure XP beadsBeckmanCatalog #A63881
Step 1
ReagentQ5 polymerase New England BiolabsCatalog # M0491S
Step 1
ReagentThermolabile ExoI New England BiolabsCatalog #M0568S
Step 1
ReagentHigh Sensitivity D5000 ScreenTape Agilent TechnologiesCatalog #5067-5592
Step 1
ReagentTriton™ X-100Merck MilliporeSigma (Sigma-Aldrich)Catalog #X100-100ML
Step 2
ReagentMETA-CS 16 oligos Integrated DNA Technologies, Inc. (IDT)
Step 1
Reagent16 ADP1 oligos Integrated DNA Technologies, Inc. (IDT)
Step 1
ReagentUnloaded Tn5DiagenodeCatalog #C01070010-20
Step 1
ReagentNaCl (5 M), RNase-freeInvitrogenCatalog #AM9760G
In 2 steps
ReagentBSAMerck MilliporeSigma (Sigma-Aldrich)Catalog # A3294
Step 1
Reagent Magnesium chlorideMerck MilliporeSigma (Sigma-Aldrich)Catalog # 7786-30-3
Step 1
ReagentUniversal Primer/Index Primers New England BiolabsCatalog #E7335L
Step 1
ReagentWaterInvitrogen - Thermo FisherCatalog #2646318
Step 2
ReagentD5000 ScreenTape Agilent TechnologiesCatalog #5067-5588
Step 1
ReagentdNTP mix Thermo FisherCatalog #R0193
Step 1
ReagentWater Invitrogen - Thermo FisherCatalog #2646318
Step 1
ReagentGlycerol-500MLMerck MilliporeSigma (Sigma-Aldrich)Catalog #G5516
Step 1
ReagentTransposition Buffer DiagenodeCatalog #C01019043
Step 1
Reagent16 ADP2 oligos Integrated DNA Technologies, Inc. (IDT)
Step 1
ReagentUltraPure™ 0.5M EDTA, pH 8.0Thermo ScientificCatalog #15575020
Step 2
Reagent1M TRIS pH 8.0VWR InternationalCatalog #97062-674
Step 2
ReagentTriton™ X-100Merck MilliporeSigma (Sigma-Aldrich)Catalog #X100-100ML
Step 2
ReagentLow TE InvitrogenCatalog #8019005
Step 1
ReagentQ5 Reaction Buffer New England BiolabsCatalog #M0491S
Step 1
ReagentTL Proteinase K New England BiolabsCatalog # P8111S
Step 1
ReagentTagmentase Dilution Buffer DiagenodeCatalog #C01070011
Step 1
ReagentQ5 High GC Enhancer New England BiolabsCatalog #M0491S
Step 1
PROTOCOL MATERIALS
PROTOCOL MATERIALS
ReagentUnloaded Tn5DiagenodeCatalog #C01070010-20 Go togo to step #3
ReagentMETA-CS 16 oligos Integrated DNA Technologies, Inc. (IDT) Go togo to step #2
ReagentTransposition Buffer DiagenodeCatalog #C01019043 Go togo to step #5
ReagentTagmentase Dilution Buffer DiagenodeCatalog #C01070011 Go togo to step #5
ReagentQ5 Reaction Buffer New England BiolabsCatalog #M0491S Go togo to step #7 , #9, #11 ReagentQ5 polymerase New England BiolabsCatalog # M0491S Go togo to step #7 , #9, #11 ReagentPBS Invitrogen - Thermo FisherCatalog #2610807 Go togo to step #6 ReagentTL Proteinase K New England BiolabsCatalog # P8111S Go togo to step #2 , #5 ReagentQ5 High GC Enhancer New England BiolabsCatalog #M0491S Go togo to step #7 , #9, #11
Reagent Magnesium chlorideMerck MilliporeSigma (Sigma-Aldrich)Catalog # 7786-30-3 Concentration100 millimolar (mM) Go togo to step #7
ReagentdNTP mix Thermo FisherCatalog #R0193 Concentration10 millimolar (mM) Go togo to step #7 , #9, #11
ReagentBSAMerck MilliporeSigma (Sigma-Aldrich)Catalog # A3294 Concentration20 mg/mL
Reagent16 ADP1 oligos Integrated DNA Technologies, Inc. (IDT) Go togo to step #7
Reagent16 ADP2 oligos Integrated DNA Technologies, Inc. (IDT) Go togo to step #9
ReagentWater Invitrogen - Thermo FisherCatalog #2646318 Go togo to step #7 , #9, #11
ReagentUniversal Primer/Index Primers New England BiolabsCatalog #E7335L Go togo to step #11 ReagentThermolabile ExoI New England BiolabsCatalog #M0568S Go togo to step #8 , #10
ReagentLow TE InvitrogenCatalog #8019005 Go to
ReagentGlycerol-500MLMerck MilliporeSigma (Sigma-Aldrich)Catalog #G5516 Go togo to step #3
ReagentZymo DNA Clean & Concentrator Kit Zymo ResearchCatalog #D4014 Go togo to step #12
ReagentAmpure XP beadsBeckmanCatalog #A63881 Go togo to step #12
ReagentHigh Sensitivity D5000 ScreenTape Agilent TechnologiesCatalog #5067-5592
ReagentD5000 ScreenTape Agilent TechnologiesCatalog #5067-5588

RECIPE FOR MAKING IN-HOUSE REAGENTS
RECIPE FOR MAKING IN-HOUSE REAGENTS
2X Single Cell Lysis Buffer
ReagentNaCl (5 M), RNase-freeInvitrogenCatalog #AM9760G Concentration40 millimolar (mM)
Reagent1M TRIS pH 8.0VWR InternationalCatalog #97062-674 Concentration40 millimolar (mM)
ReagentTriton™ X-100Merck MilliporeSigma (Sigma-Aldrich)Catalog #X100-100ML Concentration0.3 % volume
ReagentWaterInvitrogen - Thermo FisherCatalog #2646318
Note
Make 1X Single Cell Lysis Buffer on the day of sort (30 reactions)
Add Concentration1.5 μL TL Proteinase K + Concentration1.5 μL 1M DTT to Concentration27 μL of 2X cell lysis buffer.
Dilute 1:1 with water to obtain 1X solution for sorting directly into the buffer.

12X quenching solution
ReagentNaCl (5 M), RNase-freeInvitrogenCatalog #AM9760G Concentration600 millimolar (mM)
ReagentUltraPure™ 0.5M EDTA, pH 8.0Thermo ScientificCatalog #15575020 Concentration90 millimolar (mM) ReagentTriton™ X-100Merck MilliporeSigma (Sigma-Aldrich)Catalog #X100-100ML Concentration0.02 % volume

Note
*Before use prepare 6X Stop Mix for use for 20 reactions below:
  • Dilute Concentration1 μL of TL proteinase K + Concentration19 μL PBS
  • Add Concentration20 μL 12X stop solution for the final 6X Stop solution.

ADP1 and ADP2 Mix
  1. Reconstitute the 16 ADP1 and 16 ADP2 primers separately in low TE and store in aliquots at Temperature-80 °C until ready for use.
  2. Make an equimolar mix of the 16 ADP1 and ADP2 primers to make the ADP1 and ADP2 mix respectively.

Note
Concentration6.25 micromolar (µM) each primer x 16 primers for total Concentration100 micromolar (µM) solution



TRANSPOSOME LOADING
TRANSPOSOME LOADING
Transposon Annealing
  • Reconstitute 16 META-CS oligos and 1 reverse oligo to Concentration100 micromolar (µM) in Annealing Buffer (Concentration40 millimolar (mM) Tris-HCl (Ph8 ), Concentration50 millimolar (mM) NaCl)
  • Combine 1:1 of a singular META-CS oligo with the reverse oligo (there should be 16 separate reactions to put on the thermocycler). Mix up the reaction, spin it down briefly, and run the thermocycler using the conditions below:






Transposon Assembly.
  • Combine all 16 reactions into one tube and aliquot for storage at Temperature-80 °C .
  • Take Concentration10 μL of this aliquot and combine it with 10μL of unloaded Transposome
  • Incubate at Temperature23 °C forDuration00:30:00
  • Add Concentration10 μL of 100% glycerol.
  • Aliquot and store at Temperature-80 °C .
Note
Estimated final concentration including glycerol storage (~16.7 μM dimerized Tn5)
*Prior to use, dilute Tn5 in Diagenode Tn5 dilution buffer depending on the desired concentration
Optimization of Tn5 concentration:
Check on 50 cells using dilutions of 1:500, 1:750, 1:1000, and 1:1500, and check the tagmentation curve.Go togo to step #14 Appendix-2


30m
TN5-DUPLEX LIBRARY PROCEDURE
TN5-DUPLEX LIBRARY PROCEDURE
3h 5m 30s
3h 5m 30s
Sorting and lysing cells Concentration2 μL
  • Prepare nuclei for sorting.
  • Sort cells directly into Concentration2 μL of 1X cell lysis buffer
Run the thermocycler using the conditions below Temperature65 °C Lid Temp

Temperature30 °C for Duration01:00:00
Temperature55 °C for Duration00:10:00
Temperature4 °C hold
The plate can be stored after lysis.
1h 10m
Tn5 tagmentation Concentration8 μL
  • Add Concentration8 μL transposition mix (total Concentration10 μL reaction). Vortex, spin down.
  • Concentration5 μL Diagenode 2X Tagmentation buffer
  • Concentration1 μL diluted Tn5 per optimized dilution instructions above
  • Concentration2 μL H2O
Incubate in thermocycler using the conditions below Temperature65 °C Lid Temp

Temperature55 °C for Duration00:15:00
Temperature4 °C hold
15m
Pipetting
Mix
Critical
Quenching Concentration2 μL
  • Prepare 6X Stop Mix and add Concentration2 μL Mix per tube. Spin down, vortex, and spin down.
  • Incubate in thermocycler using the conditions below Temperature65 °C Lid Temp

Temperature37 °C for Duration00:30:00
Temperature55 °C for Duration00:10:00
Temperature4 °C hold
40m
First Strand tagging Concentration13 μL
Add Concentration13 μL Strand Tagging Mix 1. Vortex and spin down.
  • Concentration5 μL Q5 Reaction Buffer
  • Concentration5 μL μL Q5 High GC Enhancer
  • Concentration0.6 μL Concentration100 millimolar (mM) MgCl2
  • Concentration0.5 μL Concentration10 millimolar (mM) dNTP mix
  • Concentration0.25 μL BSA 20mg/ml
  • Concentration0.25 μL Q5 polymerase
  • Concentration0.85 μL Concentration100 micromolar (µM) ADP1 primer mix
  • Concentration0.55 μL H2O
Incubate in thermocycler using the conditions below Temperature105 °C Lid Temp

Temperature72 °C for Duration00:03:00 Temperature98 °C for Duration00:00:30
Temperature62 °C for Duration00:05:00
Temperature72 °C for Duration00:01:00
Temperature4 °C hold
9m 30s
Stop reaction Concentration1 μL
Add Concentration1 μL Thermolabile ExoI per tube. Try to touch the minimum of the solution surface. Spin down first, then plate mix, and spin down again.

Temperature37 °C for Duration00:15:00
Temperature65 °C for Duration00:05:00
Temperature4 °C hold Temperature75 °C Lid Temp
20m
Second Strand tagging Concentration4 μL
Add Concentration4 μL Strand Tagging 2 Mix (total Concentration30 μL ). Vortex and spin down.
  • Concentration1 μL Q5 Reaction Buffer
  • Concentration1 μL Q5 High GC Enhancer
  • Concentration0.95 μL Concentration100 micromolar (µM) ADP2 primer mix
  • Concentration0.1 μL Concentration10 millimolar (mM) each dNTP mix
  • Concentration0.1 μL Q5 polymerase
  • Concentration0.85 μL H2O
Incubate in thermocycler using the conditions below Temperature105 °C Lid Temp .

Temperature98 °C for Duration00:00:30
Temperature62 °C for Duration00:05:00
Temperature72 °C for Duration00:01:00
Temperature4 °C hold
6m 30s
Stop reactionConcentration1 μL
Add Concentration1 μL Thermolabile ExoI per tube. Try to touch the minimum of the solution surface. Spin down first, then plate mix, and spin down again.

Temperature37 °C for Duration00:15:00
Temperature65 °C forDuration00:05:00 Duration00:00:00
Temperature4 °C hold Temperature75 °C Lid Temp

20m
Library prepConcentration14 μL
  1. Make PCR Mix (per cell):
  • Concentration5 μL NEB Universal Primer (NEB E7335S, E7500S, E7710S, E7730S)
  • Concentration4 μL Q5 Reaction Buffer
  • Concentration4 μL Q5 High GC Enhancer
  • Concentration0.4 μL Concentration10 millimolar (mM) each dNTP mix
  • Concentration0.4 μL water (H2O)
  • Concentration0.2 μL Q5 polymerase *add last
2.Add Concentration5 μL NEB Index Primer Go togo to step #14 per tube, avoiding touching the liquid.
3.Add Concentration14 μL PCR Mix per tube, avoiding touching the liquid. Vortex and spin down.
4. Incubate in thermocycler using the conditions below

Temperature98 °C for Duration00:00:20
12 cycles of Temperature98 °C for Duration00:00:10 , Temperature72 °C for Duration00:02:00
Temperature72 °C for Duration00:05:00
Temperature4 °C hold

7m 30s
PURIFICATION AND ZYMO CLEAN
PURIFICATION AND ZYMO CLEAN
Zymo clean
  1. Utilize the Zymo DNA Clean & Concentrator Kit with associated protocol (abbreviated version below).
  • For microbulk samples, use 4:1 DNA binding buffer to sample (Concentration200 μL buffer to Concentration50 μL reaction). For single cell samples, pool desired samples first, then measure the total pooled volume and use 4:1 DNA binding buffer to sample volume. For single cell samples, pool 5 cells per spin column. For 50 cell samples, use 1 spin column per sample.
  • Add it to the spin column. The maximum volume that the spin column can hold is Concentration800 μL so pooled samples should have to be run through the same column sequentially until all of the liquid has been run through, discarding flowthrough each time.
  • Spin for Duration00:00:30 at maximum speed on the tabletop centrifuge >10,000xg at RT
  • Add Concentration200 μL wash buffer (with ethanol added) and centrifuge column
  • Repeat wash again
  • Add Concentration42 μL x0.1 TE to elute and wait Duration00:04:00 at room temperature
  • Spin for Duration00:00:30 at maximum speed on the tabletop centrifuge >10,000xg at RT
2. Run Concentration2 μL on High Sensitivity D5000 TapeStation chip.


5m
Size Selection (AMPure) Concentration40 μL DNA library
  1. Add Concentration22 μL (0.55X) resuspended AMPure XP beads to Concentration40 μL DNA library. Vortex and spin down. Label the tube as “A”. Incubate for Duration00:05:00 at RT.
  2. Place tube A on a magnetic stand for Duration00:05:00 . Carefully transfer the supernatant to a new tube. Label the new tube as “B”.
  3. Size select tube “A” (0.55x AMPure XP beads):
a. Add Concentration200 μL of 80% freshly prepared ethanol to all tubes while in the magnetic stand, then carefully remove and discard the supernatant.
b. repeat the ethanol wash step one more time.
c. Let air dry on magnetic stand for Duration00:01:00 at RT.
d. Remove the tubes from the magnetic stand. Elute DNA from beads with Concentration12 μL 0.1X TE (for single cell pools) or Concentration18 μL 0.1X TE (for 50 cell pools). Vortex and gently spin down, incubate for 3 min at RT.
e. Place the tubes on the magnetic stand for Duration00:03:00 . Transfer Concentration18 μL of supernatant to a clean tube.
  1. Size select tube "B" (0.8x AMPure XP beads):
a. Add Concentration8 μL AMPure XP beads to DNA solution in tube B (0.15X). Vortex and gently spin down. Incubate for Duration00:05:00 at RT.
b. Place tube B on the magnetic stand for Duration00:05:00 . Remove supernatant from tube B.  
i. IMPORTANT: save the supernatant in case AmPure did not work! (the DNA will still be in the supernatant)
c. Add Concentration200 μL of 80% freshly prepared ethanol to all tubes while in the magnetic stand, then carefully remove and discard the supernatant.
d. repeat the ethanol wash step one more time.
e. Let air dry on magnetic stand for 1 min at RT.
f. Remove the tubes from the magnetic stand. Elute DNA from beads with Concentration12 μL 0.1X TE (for single cell pools) or Concentration18 μL 0.1X TE (for 50 cell pools). Vortex and gently spin down, incubate for 3 min at RT.
g. Place the tubes on the magnetic stand for Duration00:03:00 . Transfer Concentration18 μL of supernatant to a clean tube.
  1. Run Concentration2 μL on High Sensitivity D5000 TapeStation chip. (RunConcentration1 μL of sample and 1 of 0.1x TE instead of Concentration2 μL of sample if you need to preserve sample). (Expected concentration for 5 single cell pools is: Concentration300-1000 pg/μL . Expected concentration for 50 cell pools is: Concentration2000-15000 pg/μL .
  2. Proceed to DNA quantification with final product and dilute accordingly for sequencing. Run TapeStation, need at least Concentration5 nanomolar (nM) concentration for sequencing. *Fraction B yields best sequencing results.

- Tube "A" (0.55x) contains DNA fragments with an average of 1000bp.
Tube "B" (0.15x) contains DNA fragments with an average of 400-500bp (fragment size may range from 300bp-600bp).


27m
Appendix-1
Appendix-1
SI Appendix  Table S1: Oligonucleotide sequences of META-CS transposon DNA and primers.

All oligos are HPLC purified
ABC
AB
META transposon sequences:
META-CS-1 GGCACCGAAAAAGATGTGTATAAGAGACAG
META-CS-2 CTCGGCGATAAAAGATGTGTATAAGAGACAG
META-CS-3 GGTGGAGCATAAAGATGTGTATAAGAGACAG
META-CS-4 CGAGCGCATTAAAGATGTGTATAAGAGACAG
META-CS-5 AGCCCGGTTATAAGATGTGTATAAGAGACAG
META-CS-6 TCGGCACCAATAAGATGTGTATAAGAGACAG
META-CS-7 GCCTGTGGATTAAGATGTGTATAAGAGACAG
META-CS-8 GCGACCCTTTTAAGATGTGTATAAGAGACAG
META-CS-9 GCATGCGGTAATAGATGTGTATAAGAGACAG
META-CS-10 GCGTTGCCATATAGATGTGTATAAGAGACAG
META-CS-11 GGCCGCATTTATAGATGTGTATAAGAGACAG
META-CS-12 ACCGCCTCTATTAGATGTGTATAAGAGACAG
META-CS-13 CCGTGCCAAAATAGATGTGTATAAGAGACAG
META-CS-14 TCTCCGGGAATTAGATGTGTATAAGAGACAG
META-CS-15 CCGCGCTTATTTAGATGTGTATAAGAGACAG
META-CS-16 CTGAGCTCGTTTTAGATGTGTATAAGAGACAG
META-CS-rev /5Phos/CTGTCTCTTATACACATC/3InvdT/
Adp1 primer mix:
META-CS-1-adp1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGCACCGAAAAAGATGTGTATAAG
META-CS-2-adp1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTCGGCGATAAAAGATGTGTATAAG
META-CS-3-adp1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGTGGAGCATAAAGATGTGTATAAG
META-CS-4-adp1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGAGCGCATTAAAGATGTGTATAAG
META-CS-5-adp1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCCCGGTTATAAGATGTGTATAAG
META-CS-6-adp1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCGGCACCAATAAGATGTGTATAAG
META-CS-7-adp1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCCTGTGGATTAAGATGTGTATAAG
META-CS-8-adp1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCGACCCTTTTAAGATGTGTATAAG
META-CS-9-adp1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCATGCGGTAATAGATGTGTATAAG
META-CS-10-adp1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCGTTGCCATATAGATGTGTATAAG
META-CS-11-adp1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGCCGCATTTATAGATGTGTATAAG
META-CS-12-adp1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTACCGCCTCTATTAGATGTGTATAAG
META-CS-13-adp1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCGTGCCAAAATAGATGTGTATAAG
META-CS-14-adp1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCTCCGGGAATTAGATGTGTATAAG
META-CS-15-adp1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCGCGCTTATTTAGATGTGTATAAG
META-CS-16-adp1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGAGCTCGTTTTAGATGTGTATAAG
Adp2 primer mix:
META-CS-1-adp2 GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGCACCGAAAAAGATGTGTATAAG
META-CS-2-adp2 GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTCGGCGATAAAAGATGTGTATAAG
META-CS-3-adp2 GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGTGGAGCATAAAGATGTGTATAAG
META-CS-4-adp2 GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGAGCGCATTAAAGATGTGTATAAG
META-CS-5-adp2 GACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGCCCGGTTATAAGATGTGTATAAG
META-CS-6-adp2 GACTGGAGTTCAGACGTGTGCTCTTCCGATCTTCGGCACCAATAAGATGTGTATAAG
META-CS-7-adp2 GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCCTGTGGATTAAGATGTGTATAAG
META-CS-8-adp2 GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCGACCCTTTTAAGATGTGTATAAG
META-CS-9-adp2 GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCATGCGGTAATAGATGTGTATAAG
META-CS-10-adp2 GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCGTTGCCATATAGATGTGTATAAG
META-CS-11-adp2 GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGCCGCATTTATAGATGTGTATAAG
META-CS-12-adp2 GACTGGAGTTCAGACGTGTGCTCTTCCGATCTACCGCCTCTATTAGATGTGTATAAG
META-CS-13-adp2 GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCGTGCCAAAATAGATGTGTATAAG
META-CS-14-adp2 GACTGGAGTTCAGACGTGTGCTCTTCCGATCTTCTCCGGGAATTAGATGTGTATAAG
META-CS-15-adp2 GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCGCGCTTATTTAGATGTGTATAAG
META-CS-16-adp2 GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGAGCTCGTTTTAGATGTGTATAAG
Indexes
AB
AB
I7_Index_ID NEB index primer
1 ATCACG
2 CGATGT
3 TTAGGC
4 TGACCA
5 ACAGTG
6 GCCAAT
7 CAGATC
8 ACTTGA
9 GATCAG
10 TAGCTT
11 GGCTAC
12 CTTGTA
13 AGTCAA
14 AGTTCC
15 ATGTCA
16 CCGTCC
17 GTAGAG
18 GTCCGC
19 GTGAAA
20 GTGGCC
21 GTTTCG
22 CGTACG
23 GAGTGG
24 GGTAGC
25 ACTGAT
26 ATGAGC
27 ATTCCT
28 CAAAAG
29 CAACTA
30 CACCGG
31 CACGAT
32 CACTCA
33 CAGGCG
34 CATGGC
35 CATTTT
36 CCAACA
37 CGGAAT
38 CTAGCT
39 CTATAC
40 GTGATC
41 GACGAC
42 TAATCG
43 TACAGC
44 TATAAT
45 TCATTC
46 TCCCGA
47 TCGAAG
48 TCGGCA
Citations
Xing D, Tan L, Chang CH, Li H, Xie XS. Accurate SNV detection in single cells by transposon-based whole-genome amplification of complementary strands.
https://doi.org/10.1073/pnas.2013106118