1. Brain Products. Brain Vision Recorder User Manual. 1.21.0402. Gilching: Brain Products GmbH; 2018
2. Aydin M, Carpenelli AL, Lucia S, Di Russo F. The Dominance of Anticipatory Prefrontal Activity in Uncued Sensory–Motor Tasks. Sensors (Basel). 2022 Aug 31;22(17).
3. Berchicci M, Lucci G, Pesce C, Spinelli D, Di Russo F. Prefrontal hyperactivity in older people during motor planning. Neuroimage. 2012 Sep;62(3):1750–60.
4. Berchicci M, Pontifex MB, Drollette ES, Pesce C, Hillman CH, Russo FD. From cognitive motor preparation to visual processing: The benefits of childhood fitness to brain health. Neurosci. 2015 Jul 9;298:211–9.
5. Affinito S, Eteson B, Tamayo Caceres L, Moos ET, Karakostis FA. Exploring the cognitive underpinnings of early hominin stone tool use through an experimental EEG approach. Sci Rep. 2024; (in press).
6. Reis PMR, Hebenstreit F, Gabsteiger F, von Tscharner V, Lochmann M. Methodological aspects of EEG and body dynamics measurements during motion. Front Hum Neurosci. 2014 Mar 24;8:1–19.
7. Ives J, Wigglesworth J. Sampling rate effect of surface EMG timing and amplitude measures. Clin Biomech Bristol Avon. 2003 Aug 1;18:543–52.
8. Brain Products. Brain Vision Analyzer User Manual. 2.2.1. Gilching: Brain Products GmbH; 2020
9. Standring S, editor. Gray’s Anatomy: The Anatomical Basis of Clinical Practice. 42nd ed. Amsterdam: Elsevier; 2021.
10. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for sEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000 Oct 1;10(5):361–74.
11. Stegeman D, Hermens H. Standards for surface electromyography: The European project Surface EMG for non-invasive assessment of muscles (SENIAM). Enschede: Roessingh Research and Development; 2007.
12. Eteson B, Affinito S, Moos ET, Karakostis FA. “How Handy was early hominin ‘know-how’?” An experimental approach exploring efficient early stone tool use. Am J Biol Anthropol. 2024 Sep 2;185(3).
13. Key AJM, Farr I, Hunter R, Winter SL. Muscle recruitment and stone tool use ergonomics across three million years of Palaeolithic technological transitions. J Hum Evol. 2020 Jul 1;144.
14. Hamrick MW, Churchill SE, Schmitt D, Hylander WL. EMG of the human flexor pollicis longus muscle: implications for the evolution of hominid tool use. J Hum Evol. 1998 Feb;34(2):123–36.
15. Marzke MW, Toth N, Schick K, Reece S, Steinberg B, Hunt K, et al. EMG study of hand muscle recruitment during hard hammer percussion manufacture of Oldowan tools. Am J Phys Anthropol. 1998;105(3):315–32.
16. Marzke MW, Shackley MS. Hominid hand use in the pliocene and pleistocene: Evidence from experimental archaeology and comparative morphology. J Hum Evol. 1986 Sep 1;15(6):439–60.
17. Key AJM, Dunmore CJ. The evolution of the hominin thumb and the influence exerted by the non-dominant hand during stone tool production. J Hum Evol. 2015 Jan 1;78:60–9.
18. Mohr M, Schön T, von Tscharner V, Nigg BM. Intermuscular Coherence Between Surface EMG Signals Is Higher for Monopolar Compared to Bipolar Electrode Configurations. Front Physiol. 2018 May 17;9.
19. Islam MdJ, Ahmad S, Ferdousi A, Haque F, Reaz MBI, Bhuiyan MAS, et al. Optimizing electrode positions on forearm to increase SNR and myoelectric pattern recognition performance. Eng Appl Artif Intell. 2023 Jun 1;122.
20. Tankisi H, Burke D, Cui L, de Carvalho M, Kuwabara S, Nandedkar SD, et al. Standards of instrumentation of EMG. Clin Neurophysiol. 2020 Jan 1;131(1):243–58.
21. Boyer M, Bouyer L, Roy JS, Campeau-Lecours A. Reducing Noise, Artifacts and Interference in Single Channel EMG Signals: A Review. Sensors. 2023 Mar 8;23(6).
22. Enoka RM, Duchateau J. Inappropriate interpretation of surface EMG signals and muscle fiber characteristics impedes understanding of the control of neuromuscular function. J Appl Physiol. 2015 Dec 15;119(12):1516–8.
23. EEG caps in a nutshell [Internet]. EASYCAP GmbH; 2022 Nov [cited 2024 Mar 19]. Available from: https://www.easycap.de/wp-content/uploads/2018/02/EasyCap_CapHandling_Flyer_e.pdf
24. The 10-20 System for EEG [Internet]. TMSI Human Electrophysiology [cited 2024 Mar 25]. Available from: https://info.tmsi.com/blog/the-10-20-system-for-eeg
25. Leuchs L. Choosing your reference & why it matters [Internet]. Brain Products Press Release; 2019 [cited 2024 Mar 14]. Available from: https://pressrelease.brainproducts.com/referencing/
26. Stout D, Toth N, Schick K, Stout J, Hutchins G. Stone Tool-Making and Brain Activation: Position Emission Tomography (PET) Studies. J Archaeol Sci. 2000 Dec;27(12):1215–23.
27. Stout D, Chaminade T. The evolutionary neuroscience of tool making. Neuropsychologia. 2007;45(5):1091–100.
28. Renfrew C, Frith C, Malafouris L, Stout D, Toth N, Schick K, et al. Neural correlates of Early Stone Age toolmaking: technology, language and cognition in human evolution. Philos Trans R Soc B Biol Sci. 2008 Jun 12;363(1499):1939–49.
29. Stout D, Hecht E, Khreisheh N, Bradley B, Chaminade T. Cognitive Demands of Lower Paleolithic Toolmaking. PLOS ONE. 2015 Apr 15;10(4).
30. Hecht EE, Pargeter J, Khreisheh N, Stout D. Neuroplasticity enables bio-cultural feedback in Paleolithic stone-tool making. Sci Rep. 2023 Feb 18;13(1).
31. Hecht EE, Gutman DA, Khreisheh N, Taylor SV, Kilner J, Faisal AA, et al. Acquisition of Paleolithic toolmaking abilities involves structural remodeling to inferior frontoparietal regions. Brain Struct Funct. 2015 Jul 1;220(4):2315–31.
32. Putt SSJ, Wijeakumar S, Spencer JP. Prefrontal cortex activation supports the emergence of early stone age toolmaking skill. NeuroImage. 2019 Oct 1;199:57–69.
33. Luca J, Hazenfratz M, Monteith G, Sanchez A, Gaitero L, James F. Electrode scalp impedance differences between electroencephalography machines in healthy dogs. Can J Vet Res. 2021 Oct;85(4):309–11.
34. Górecka J, Makiewicz P. The Dependence of Electrode Impedance on the Number of Performed EEG Examinations. Sensors. 2019 Jun 8;19(11).
35. Greischar LL, Burghy CA, van Reekum CM, Jackson DC, Pizzagalli DA, Mueller C, et al. Effects of electrode density and electrolyte spreading in dense array electroencephalographic recording. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2004 Mar;115(3):710–20.
36. Tenke CE, Kayser J. A convenient method for detecting electrolyte bridges in multichannel electroencephalogram and event-related potential recordings. Clin Neurophysiol. 2001 Mar;112(3):545–50.
37. Cronin NJ, Kumpulainen S, Joutjärvi T, Finni T, Piitulainen H. Spatial variability of muscle activity during human walking: The effects of different EMG normalization approaches. Neuroscience. 2015 Aug 6;300:19–28.
38. Boudewyn MA, Luck SJ, Farrens JL, Kappenman ES. How Many Trials Does It Take to Get a Significant ERP Effect? It Depends. Psychophysiology. 2017 Dec 20;55(6).
39. Baum F, Wolfensteller U, Ruge H. Learning-Related Brain-Electrical Activity Dynamics Associated with the Subsequent Impact of Learnt Action-Outcome Associations. Front Hum Neurosci. 2017 May 15;11.
40. Amin HU, Ullah R, Reza MF, Malik AS. Single-trial extraction of event-related potentials (ERPs) and classification of visual stimuli by ensemble use of discrete wavelet transform with Huffman coding and machine learning techniques. J NeuroEngineering Rehabil. 2023 Jun 2;20.
41. Riehle A, Vaadia E, editors. Motor Cortex in Voluntary Movements: A Distributed System for Distributed Functions. 1st ed. Boca Raton: CRC Press; 2004.
42. Gage K. Signal Quality Monitor – EMGworks [Internet]. Delsys Europe. [cited 2024 Apr 2]. Available from: https://delsyseurope.com/emgworks/signal-quality-monitor/
43. De Luca CJ, Donald Gilmore L, Kuznetsov M, Roy SH. Filtering the surface EMG signal: Movement artifact and baseline noise contamination. J Biomech. 2010 May;43(8):1573–9.
44. Potvin JR, Brown SHM. Less is more: high pass filtering, to remove up to 99% of the surface EMG signal power, improves EMG-based biceps brachii muscle force estimates. J Electromyogr Kinesiol. 2004 Jun 1;14(3):389–99.
45. Merletti R. Standards for Reporting EMG Data (1999). J Electromyogr Kinesiol. 2018 Oct; 42.
46. Kappenman ES, Luck SJ. The Effects of Electrode Impedance on Data Quality and Statistical Significance in ERP Recordings. Psychophysiol. 2010 Sep 1;47(5):888–904.
47. Kappenman ES, Luck SJ. The Effects of Electrode Impedance on Data Quality and Statistical Significance in ERP Recordings. Psychophysiology. 2010 Sep 1;47(5):888–904.
48. Rose W. Raw signal amplification – Electromyogram Analysis [Internet]. Mathematics and Signal Processing for Biomechanics; 2019 Oct [cited 2022 Apr 18] Available from: https://www.udel.edu/biology/rosewc/kaap686/notes/EMG-analysis.pdf
49. Negro F, Keenan K, Farina D. Power spectrum of the rectified EMG: when and why is rectification beneficial for identifying neural connectivity? J Neural Eng. 2015 Jun;12(3).
50. Neto OP, Christou EA. Rectification of the EMG signal impairs the identification of oscillatory input to the muscle. J Neurophysiol. 2010 Feb;103(2):1093–103.
51. Excel help & learning [Internet] Microsoft Support. [cited 2024 Apr 5]. Available from: https://support.microsoft.com/en-gb/excel
52. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. Past: Paleontological statistics software package for education and data analysis. Palaeontol Electronica. 2001;4:1–9.
53. Field A. Discovering Statistics using IBM SPSS Statistics. 4th ed. London: SAGE Publications. 2013.
54. Resampling [Internet]. ILCB Center of Experimental Resources. [cited 2024 Apr 2]. Available from: https://blricrex.hypotheses.org/ressources/eeg/pre-processing-for-erps/resampling
55. Gonçales LJ, Farias K, Kupssinskü L, Segalotto M. The effects of applying filters on EEG signals for classifying developers’ code comprehension. J Appl Res Technol. 2021 Dec 31;19(6):584–602.
56. Yao D, Qin Y, Hu S, Dong L, Bringas Vega ML, Valdés Sosa PA. Which Reference Should We Use for EEG and ERP practice? Brain Topogr. 2019 Apr 29;32:530–49.
57. Yao D. A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol Meas. 2001 Oct 1;22(4):693–711.
58. Dong L, Li F, Liu Q, Wen X, Lai Y, Xu P, et al. MATLAB Toolboxes for Reference Electrode Standardization Technique (REST) of Scalp EEG. Front Neurosci. 2017 Oct 30;11.
59. Villasana FC. Getting to know EEG artifacts and how to handle them in BrainVision Analyzer. 2022 [cited 2024 Apr 2]. In: Brain Products Press Release [Internet]. Gilching: Brain Products. Available from: https://pressrelease.brainproducts.com/eeg-artifacts-handling-in-analyzer/
60. Luck S. Hints for ICA-based artifact correction. 2018 Jun 24 [cited 2024 Apr 2]. In: ERP Methodology Blog [Internet]. ERP Works. Available from: https://erpinfo.org/blog/2018/6/18/hints-for-using-ica-for artifact-correction
61. Plank M. Ocular Correction ICA. 2013 Dec 1 [cited 2024 Apr 2]. In: Support & Tips, ICA - Independent Component Analysis, Transformations [Internet]. Brain Products. Available from: https://www.brainproducts.com/support-resources/ocular-correction-ica/
62. Abo-Zeid MAZ, Ahmed SM, Abbas SN. A New EEG Acquisition Protocol for Biometric Identification Using Eye Blinking Signals. Int J Intell Syst Appl. 2015 May 1; 7(6):48–54.
63. Subramaniyam NP. Getting Rid of Eye Blink in the EEG. 2018 Jun 11. [cited 2024 Apr 2]. In: Lab Talk [Internet]. Sapien Labs. Available from: https://sapienlabs.org/getting-rid-of-eye-blink-in-the-eeg/
64. Baseline Correction. [cited 2024 Apr 9]. In: EEG Data Processing [Internet]. Bern: Cognitive Computational Neuroscience. Available from: https://neuro.inf.unibe.ch/AlgorithmsNeuroscience/YOUR%20URL/AlgorithmsNeuroscience/Tutorial_fil s/BaselineCorrection.html
65. Liland KH, Rukke EO, Olsen EF, Isaksson T. Customized baseline correction. Chemom Intell Lab Syst. 2011 Nov 15;109(1):51–6.
66. Baseline correction of neural signals. [cited 2024 Apr 4]. In: Tutorials [Internet]. Toronto: Auditory Aging. Available from: https://www.auditoryaging.com/tutorial-baselinecorrection
67. Jiang X, Bian GB, Tian Z. Removal of Artifacts from EEG Signals: A Review. Sensors. 2019 Feb 26;19(5).
68. Graham R. Exploring the minimum number of trials needed to accurately detect concealed information using EEG. The Plymouth Student Scientist. 2021 Dec 24; 42(2):532–47.
69. Al-Fahoum AS, Al-Fraihat AA. Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time‐Frequency Domains. Int Sch Res Notices. 2014 Feb 13.
70. Spectral Analysis using FFT 2018 Mar. [cited 2024 Jul 2]. In: BrainVision Analyzer 2 Webinar [Internet]. Gilching: Brain Products. Available from: https://www.brainproducts.com/files/webinar/2018_WB_3_FFT.pdf
71. Vallat R. Bandpower of an EEG signal. 2018 May. [cited 2024 Apr 24]. [Internet]. Available from: https://raphaelvallat.com/bandpower.html
72. Dempster J. Signal Analysis and Measurement. In: Dempster J, editor. The Laboratory Computer (Biological Techniques Series). London: Academic Press; 2001. p. 136–71.
73. Young CS. The Compromise of Electromagnetic Signals. In: Young CS, editor. Information Security Science. Oxford: Syngress; 2016. p. 159–84.
74. Rugg MD. Event-related/Evoked Potentials. In: Smelser NJ, Baltes PB, editors. International Encyclopedia of the Social & Behavioral Sciences. Oxford: Pergamon; 2001. p. 4962–6.
75. Borgognone MG, Bussi J, Hough G. Principal component analysis in sensory analysis: covariance or correlation matrix? Food Qual Prefer. 2001 Jul 1;12(5):323–6.
76. Jackson DA. Stopping Rules in Principal Components Analysis: A Comparison of Heuristical and Statistical Approaches. Ecol. 1993 Dec 1;74(8):2204–14.
77. Kirstein C. Sleeping and Dreaming. In: Enna SJ, Bylund DB, editors. xPharm: The Comprehensive Pharmacology Reference. New York: Elsevier; 2008. p. 1–4. Available from: https://www.sciencedirect.com/science/article/pii/B9780080552323603198
78. Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999 Nov;110(11):1842–57.
79. Nakayashiki K, Saeki M, Takata Y, Hayashi Y, Kondo T. Modulation of event-related desynchronization during kinematic and kinetic hand movements. J Neuroeng Rehabil. 2014 May 30;11.
80. Jasper H, Penfield W. Electrocorticograms in man: Effect of voluntary movement upon the electrical activity of the precentral gyrus. Arch Psychiatr Nervenkr. 1949 Jan;183:163–74.
81. Tzagarakis C, Ince NF, Leuthold AC, Pellizzer G. Beta-Band Activity during Motor Planning Reflects Response Uncertainty. J Neurosci. 2010 Aug 25;30(34):11270–7.
82. Pfurtscheller G. Functional brain imaging based on ERD/ERS. Vision Res. 2001 May 1;41(10):1257–60.
83. Formaggio E, Storti SF, Boscolo Galazzo I, Gandolfi M, Geroin C, Smania N, et al. Modulation of event-related desynchronization in robot-assisted hand performance: brain oscillatory changes in active, passive and imagined movements. J Neuroeng Rehabil. 2013 Feb 26;10.
84. Plummer TW, Oliver JS, Finestone EM, Ditchfield PW, Bishop LC, Blumenthal SA, et al. Expanded geographic distribution and dietary strategies of the earliest Oldowan hominins and Paranthropus. Science. 2023 Feb 10;379(6632):561-6.
85. Bril B, Parry R, Dietrich G. How similar are nut-cracking and stone-flaking? A functional approach to percussive technology. Philos Trans R Soc B Biol Sci. 2015 Nov 19;370(1682).
86. Toth N, Schick K. The Oldowan: The Tool Making of Early Hominins and Chimpanzees Compared. Annu Rev Anthropol. 2009 Oct 21;38(2009):289–305.
87. Susman RL. Who Made the Oldowan Tools? Fossil Evidence for Tool Behavior in Plio-Pleistocene Hominids. J Anthropol Res. 1991 Jul;47(2):129–51.
88. Newson JJ, Thiagarajan TC. EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies. Front Hum Neurosci. 2019 Jan 9;12:521.
89. Nayak CS, Anilkumar AC. EEG Normal Waveforms. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available from: http://www.ncbi.nlm.nih.gov/books/NBK539805/
90. Banoczi W. How some drugs affect the electroencephalogram (EEG). Am J Electroneurodiagnostic Technol. 2005 Jun 1;45(2):118–29.
91. Fisher DJ, Daniels R, Jaworska N, Knobelsdorf A, Knott VJ. Effects of acute nicotine administration on behavioral and neural (EEG) correlates of working memory in non-smokers. Brain Res. 2012 Jan 6;1429:72–81.
92. Tcheslavski GV. Effects of tobacco smoking and schizotypal personality on spectral contents of spontaneous EEG. Int J Psychophysiol. 2008 Oct;70(1):88–93.
93. Gilbert DG, Dibb WD, Plath LC, Hiyane SG. Effects of nicotine and caffeine, separately and in combination, on EEG topography, mood, heart rate, cortisol, and vigilance. Psychophysiology. 2000 Sep;37(5):583–95.
94. Gladilin VN, Sitliviy VI. On the Pre-Oldowan Development Stage of the Society: To the Memory of Glynn Isaac — Outstanding Investigator in African Prehistory. Anthropol 1962-. 1987;25(3):193–204.
95. Hayden B. What Were They Doing in the Oldowan? an Ethnoarchaeological Perspective on the Origins of Human Behavior. Lithic Technol. 2008 Sep 1;33(2):105–39.
96. Titton S, Barsky D, Bargallo A, Vergès JM, Guardiola M, Solano JG, et al. Active percussion tools from the Oldowan site of Barranco León (Orce, Andalusia, Spain): The fundamental role of pounding activities in hominin lifeways. J Archaeol Sci. 2018 Aug 1;96:131–47.
97. Rogers C. Design Made Easy with Inkscape: A practical guide to your journey from beginner to pro-level vector illustration. Birmingham: Packt Publishing; 2023.