Jan 06, 2025

Public workspaceProteomics Sample Preparation of Human Skin Punch Biopsies for Data-Independent Acquisition Mass Spectrometry Analysis

  • Matthew Jaconelli1,
  • Francesca Tonelli1,
  • Dario Alessi1
  • 1MRC-PPU, University of Dundee
Icon indicating open access to content
QR code linking to this content
Protocol CitationMatthew Jaconelli, Francesca Tonelli, Dario Alessi 2025. Proteomics Sample Preparation of Human Skin Punch Biopsies for Data-Independent Acquisition Mass Spectrometry Analysis. protocols.io https://dx.doi.org/10.17504/protocols.io.14egn9e46l5d/v1
License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License,  which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Protocol status: Working
We use this protocol and it's working
Created: December 06, 2024
Last Modified: January 06, 2025
Protocol Integer ID: 117727
Keywords: ASAPCRN
Funders Acknowledgements:
Michael J Fox Foundation for Parkinson's Research
Disclaimer
DISCLAIMER – FOR INFORMATIONAL PURPOSES ONLY; USE AT YOUR OWN RISK

The protocol content here is for informational purposes only and does not constitute legal, medical, clinical, or safety advice, or otherwise; content added to protocols.io is not peer reviewed and may not have undergone a formal approval of any kind. Information presented in this protocol should not substitute for independent professional judgment, advice, diagnosis, or treatment. Any action you take or refrain from taking using or relying upon the information presented here is strictly at your own risk. You agree that neither the Company nor any of the authors, contributors, administrators, or anyone else associated with protocols.io, can be held responsible for your use of the information contained in or linked to this protocol or any of our Sites/Apps and Services.
Abstract
Protocol for the processing of human skin tissue punch biopsies from the C8 paravertebral region for data-independent acquisition mass spectrometry (DIA-MS) proteomics, including generation of a human skin proteome MS spectral library. This protocol was generated as part of a pilot study in collaboration with the Michael J. Fox Foundation. The biospecimens were obtained from the Parkinson’s Progression Marker Initiative (PPMI) (RRID:SCR_006431). For up-to-date information on the study, visit www.ppmi-info.org.
Materials
ReagentAcetonitrile ≥99.9%VWR International (Avantor)Catalog #1.00030.2500
Formic Acid, 99.0+%, Optima™ LC/MS Grade ThermoFisherScientific Catalog#A117-50
ReagentLC-grade WaterFisher ScientificCatalog #10777404
ReagentAmmonium formateMerck MilliporeSigma (Sigma-Aldrich)Catalog #70221-25G-F
ReagentThermo Scientific™ EPA Screw Vial Assembled Kit, Vials/Septa/CapsThermo ScientificCatalog #11543750
Precellys Lysing Kit Catalog#P000922-LYSK0-A
ReagentSodium Dodecyl Sulfate (SDS), Micropellets, Fisher BioReagentsThermo Fisher ScientificCatalog #15450685
ReagentHEPESFormediumCatalog #HEPES10
ReagentBond-Breaker™ TCEP Solution, Neutral pHThermo Fisher ScientificCatalog #77720
ReagentIodoacetamideMerck MilliporeSigma (Sigma-Aldrich)Catalog #I1149-25G
ReagentTrifluoroacetic acid for HPLC > 99.0%Merck MilliporeSigma (Sigma-Aldrich)Catalog #302031-100ML
ReagentMethanol, for HPLC-MS, Fisher Chemical™Thermo Fisher ScientificCatalog #10653963
ReagentTriethylammonium bicarbonate bufferMerck MilliporeSigma (Sigma-Aldrich)Catalog #T7408-500ML
ReagentThermo Scientific™ Mass Spectrometry Grade ProteasesThermo Fisher ScientificCatalog #15956915
Reagentn-Dodecyl-beta-Maltoside DetergentThermo FisherCatalog #89902
ReagentS-Trap™ Micro Column (≤ 100 µg)ProtifiCatalog #C02-micro-80
ReagentcOmplete™ EDTA-free Protease Inhibitor CocktailRocheCatalog #11873580001
ReagentRoche PhosSTOP™Merck MilliporeSigma (Sigma-Aldrich)Catalog #4906837001
ReagentEppendorf™ twin.tec™ PCR Plates LoBind™ - PCR PlatesThermo Fisher ScientificCatalog #15280735
ReagentPierce BCA Protein Assay Kit Thermo Fisher ScientificCatalog #23225
ReagentSafeSeal reaction tube, 2 ml, PP, PCR Performance Tested, Low protein-bindingSarstedtCatalog #72.695.600
ReagentAcclaim™ PepMap™ 100 C18 LC Columns, 3µm, 20mm length, 0.075mm I.D.Thermo FisherCatalog #164535
ReagentThermo Scientific™ EASY-Spray™ PepMap™ Neo UHPLC ColumnsThermo ScientificCatalog #17477583
ReagentXBridge BEH C18 Column 130Å 3.5 µm 4.6 mm X 250 mm 1/pkWatersCatalog #186003943

Note
All solvents and buffers were prepared in or aliquoted from glass amber vials, using sterile (not autoclaved) pipette tips or glass cylinders.

Equipment/Software:

Vanquish Neo nano-liquid chromatography system (ThermoScientific)
Orbitrap Astral Mass Spectrometer (ThermoScientific)
Vanquish liquid chromatography system inline with fraction collector module (ThermoScientific)
ThermoMixer C (Eppendorf)
Savant SpeedVac SPD140DDA Vacuum Concentrator (ThermoScientific)
Micro Star 17 microcentrifuge (VWR)
Centurion Scientific Limited centrifuge
Precellys Evolution tissue homogeniser with Cryolys Evolution (Bertin Technologies)
BioRuptor Plus with minichiller 300 (Diagenode)
Xcalibur (ThermoScientific)
DIA-NN (version 1.8.1)

Protein Extraction
Protein Extraction
27m
27m
Transfer frozen skin tissue to a Precellys Lysing Kit (Bertin Technologies) 2ml ceramic bead tube containing Amount500 µL SDS lysis buffer: 2% SDS (w/v), Concentration20 millimolar (mM) HEPES Ph8 , with complete EDTA-free protease inhibitor cocktail (Roche) and PhosSTOP phosphatase inhibitor cocktail tablets (Roche).

Note
Place samples TemperatureOn ice immediately following transfer.

Pipetting
Temperature
Immediately transfer samples to the Precellys Evolution tissue homogeniser (Bertin Technologies). Lyse tissue at Temperature0 °C for 15x 30 second cycles at Centrifigation6800 rpm , with 30 second rest between each cycle.

Temperature
Centrifuge samples at Centrifigation2000 x g, 4°C, 00:02:00 to reduce bubbles and transfer supernatant to fresh Protein LoBind Eppendorf tubes (Sarstedt).

2m
Centrifigation
Temperature
Heat samples at Temperature95 °C for Duration00:05:00 on a heat-block (Grant, QBT2).

5m
Temperature
Sonicate samples using a BioRuptor Diagenode (Diagenode) at Temperature4 °C for 15x 30 second cycles, with 30 seconds rest between each cycle.

Temperature
Centrifuge samples at Centrifigation17000 x g, 4°C, 00:20:00 and carefully transfer supernatant to fresh Protein LoBind Eppendorf tubes (Sarstedt), taking care not to disturb the pelleted cell debris or any visible lipids.

20m
Centrifigation
Temperature
Quantify protein concentrations using BCA assay (ThermoScientific).

Note
Samples can be stored at Temperature-80 °C at this stage.

Temperature
Aliquot Amount20 µg protein from each sample for total proteomic analysis.

Pipetting
Total Proteomics Sample Preparation
Total Proteomics Sample Preparation
1h
1h
Adjust total volume to Amount40 µL using SDS lysis buffer.

Pipetting
Reduce samples with Concentration10 millimolar (mM) TCEP (final concentration, Concentration100 millimolar (mM) TCEP stock in Concentration300 millimolar (mM) TEABC) for Shaker1100 rpm, 60°C, 00:30:00 (ThermoMixer C, Eppendorf).

30m
Mix
Temperature
Alkylate samples in the dark with Concentration40 millimolar (mM) iodoacetamide (final concentration, 400mM stock) for Shaker1100 rpm, 25°C, 00:30:00 (ThermoMixer C, Eppendorf).

30m
Mix
Temperature
Add 20% SDS to achieve a final concentration of 5% SDS, then acidify samples through addition of Trifluoracetic acid to a final concentration of 1%.
Micro S-Trap On-Column Digest
Micro S-Trap On-Column Digest
1h 22m
1h 22m
Add 6x sample volume of wash buffer (90% methanol, 10% 100mM TEABC).
Mix sample by pipetting up and down, then load Amount150 µL of sample onto micro-columns inside fresh 2ml Protein LoBind Eppendorf tubes (Sarstedt) within a centrifuge.

Mix
Centrifuge at Centrifigation1000 x g, 00:01:00 and discard flow-through.

1m
Centrifigation
Repeat Go togo to step #15 until all sample has been loaded through micro-column.

Wash S-Trap columns with bound protein by adding Amount150 µL wash buffer followed by centrifugation at Centrifigation1000 x g, 00:01:00 . Discard flow-through.

1m
Centrifigation
Wash
Repeat step 17 three times.
Note
Ensure there is no remaining wash buffer in the S-trap micro columns before proceeding to step 19, as this may impact digestion efficiency.

Digest protein by addition of Amount60 µL (1.5μg) of Trypsin/Lys-C mix (MS grade, Promega, UK) in Concentration50 millimolar (mM) TEABC solution (Ph8 ) at Temperature47 °C for Duration01:20:00 , followed by incubation at Temperature22 °C DurationOvernight (approximately 16 hours).

1h 20m
Pipetting
Overnight
Temperature
Peptide Elution
Peptide Elution
4m
4m
Elute samples by addition of Amount40 µL Concentration50 millimolar (mM) TEABC (Ph8 ) and centrifuge at Centrifigation1000 x g, 00:01:00 .

Note
Do NOT discard flow-through containing peptides at any step of elution.

1m
Centrifigation
Add Amount40 µL 0.15% (v/v) formic acid (FA) and centrifuge at Centrifigation1000 x g, 00:01:00 .

1m
Centrifigation
Pipetting
Add Amount40 µL 80% acetonitrile (ACN), 0.15% FA and centrifuge at Centrifigation1000 x g, 00:01:00 . Repeat twice (3x total).

1m
Centrifigation
Pipetting
Dry peptides at TemperatureRoom temperature using a vacuum centrifuge and store dried peptides at Temperature-20 °C until mass spectrometry analysis.

Temperature
Peptide Resuspension
Peptide Resuspension
30m
30m
Resuspend samples by addition of Amount100 µL 0.1% formic acid supplemented with 0.015% N-Dodecyl-B-D-Maltoside (DDM) and mix at Shaker1800 rpm, Room temperature , 00:30:00 (ThermoMixer C, Eppendorf).

30m
Pipetting
Mix
Temperature
If analysing immediately, transfer Amount20 µL of each sample to a 96-well plate or LC-MS vials and inject Amount200 ng peptides per sample for MS analysis.

Pipetting
Offline HPLC Fractionation of Pooled Sample Peptides for Spectral Library Generation
Offline HPLC Fractionation of Pooled Sample Peptides for Spectral Library Generation
Aliquot Amount20 µL from each sample and pool in a Amount2 mL Protein LoBind Eppendorf tube (Sarstedt).

Note
Depending on sample numbers, this volume may need to be increased or decreased.

Pipetting
Transfer to an LC-MS vial/plate and inject 50% of pooled peptides (approximately Amount44 µg ) into a Vanquish HPLC system inline with a Fraction Collector using system settings.


Solvent A – 10mM Ammonium Formate (Ph10 )
Solvent B – 10mM Ammonium Formate (Ph10 ), 80% Acetonitrile
All changes are linear: Curve = 5

New fraction collected every 30 seconds starting at 21 minutes, directly into a LoBind twintec 96-well plate (Eppendorf).
Following fraction collection, vacuum centrifuge samples at TemperatureRoom temperature until dry and store at Temperature-20 °C until mass spectrometry analysis.

Note
Samples are dried and later resuspended in the original 96-well LoBind collection plate to minimise peptide losses through sample transfer, and all fractions are additionally subsequently injected directly from each well for MS analysis. Ensure plate is tightly sealed before storing at Temperature-20 °C .

Temperature
Spectral Library Generation using Narrow-Window Data-Independent Acquisition Mass Spectrometry
Spectral Library Generation using Narrow-Window Data-Independent Acquisition Mass Spectrometry
32m
32m
Centrifuge dried peptides (contained within LoBind 96-well plate) for Centrifigation54 rcf, 00:01:00 (Centurion Scientific).
1m
Centrifigation
Add Amount20 µL of 0.1% formic acid supplemented with 0.015% N-Dodecyl-B-D-Maltoside (DDM) and mix at Shaker500 rpm, Room temperature , 00:30:00 (ThermoMixer C, Eppendorf).

Note
To prevent potential sample loss, following addition of resuspension buffer, reseal the LoBind plate prior to shaking.

30m
Pipetting
Mix
Temperature
Centrifuge resuspended peptides forCentrifigation54 rcf, 00:01:00 (Centurion Scientific). Remove plate seal.

1m
Centrifigation
Inject Amount10 µL of each fraction into a Vanquish Neo UHPLC system inline with an Orbitrap Astral mass spectrometer for DIA-MS analysis.

Trap and elute peptides using an Acclaim™ PepMap™ 100 C18 HPLC column (3 μm particle size, 75 μm diameter, 150 mm length) and separate using an EASY-Spray™ PepMap™ Neo UHPLC column (2 μm C18 particle, 75 μm diameter,150 mm length) with LC conditions.

Buffer A: 0.1% formic acid
Buffer B: 80%ACN, 0.1% formic acid



Acquire data using MS settings.

AB
Global Parameters
Application Mode Peptide
Method Duration (min) 22.6
Settings
Infusion Mode Liquid Chromatography
Expected LC Peak Width (s) 10
Advanced Peak Determination
Default Charge State 2
Orbitrap Lock Mass Correction Off
Ion Source Properties
Ion Source Type NSI
Spray Voltage Static
Positive Ion (V) 1900
Negative Ion (V) 600
Ion Transfer Tube Temp (°C ) 290
Use Ion Source Settings from Tune
FAIMS Mode Not Installed
Full Scan Properties
Orbitrap Resolution 240000
Scan Range (m/z) 380-980
RF Lens (%) 40
AGC Target Custom
Normalised AGC Target (%) 500
Maximum Injection Time (ms) 5
Microscans 1
Data Type Profile
Polarity Positive
Source Fragmentation
DIA MS Settings
Start Time (min) 0
End Time (min) 22.6
Precursor Mass Range (m/z) 380-980
DIA Window Type Auto
Isolation Window (m/z) 4
Window Overlap (m/z) 0
Window Placement Optimisation On
Number of Scan Events 149
DIA Window Mode m/z Range
Collision Energy Type Normalised
HCD Collision Energy (%) 25
Detector Type Astral
TMT Off
Scan Range (m/z) 150-2000
RF Lens (%) 40
AGC Target Custom
Normalized AGC Target (%) 500
Absolute AGC Value 5.000e4
Maximum Injection Time (ms) 3
Microscans 1
Data Type Centroid
Polarity Positive
Source Fragmentation Disabled
Loop Control Time
Time (sec) 0.6
Spectral Library Generation using DIA-NN Software (version 1.8.1)
Spectral Library Generation using DIA-NN Software (version 1.8.1)
Generate a predicted spectral library in DIA-NN by providing the downloaded reviewed (SwissProt) human UniProt FASTA file, searched with the following parameters:

Command
diann.exe --lib  --threads 24 --verbose 1 --out C:\Database\20230102-Libraries\20230102_UniprotSwissProt_Human_Cano+Iso - Ox+Ac --qvalue 0.01 --matrices --out-lib C:\ Database\20230102-Libraries\20230102_UniprotSwissProt_Human_Cano+Iso - Ox+Ac --gen-spec-lib --predictor --fasta C:\Database\20230102_UniprotSwissProt_Human_Cano+Iso.fasta --fasta-search --min-fr-mz 200 --max-fr-mz 1800 --met-excision --cut K*,R* --missed-cleavages 1 --min-pep-len 7 --max-pep-len 30 --min-pr-mz 300 --max-pr-mz 1800 --min-pr-charge 1 --max-pr-charge 4 --unimod4 --var-mods 1 --var-mod UniMod:35,15.994915,M --var-mod UniMod:1,42.010565,*n --monitor-mod UniMod:1 --reanalyse --relaxed-prot-inf --smart-profiling --peak-center --no-ifs-removal


Use this newly created spectral library to search the 96 peptide fractions, enabling the generation of a new spectral library from the search output:
Command
diann.exe --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F96.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F95.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F94.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F93.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F92.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F91.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F90.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F89.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F88.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F87.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F86.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F85.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F84.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F83.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F82.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F81.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F80.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F79.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F78.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F77.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F76.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F75.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F74.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F73.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F72.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F71.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F70.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F69.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F68.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F67.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F66.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F65.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F64.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F63.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F62.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F61.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F60.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F59.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F58.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F57.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F56.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F55.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F54.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F53.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F52.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F51.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F50.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F49.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F48.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F47.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F46.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F45.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F44.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F43.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F42.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F41.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F40.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F39.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F38.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F37.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F36.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F35.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F34.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F33.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F32.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F31.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F30.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F29.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F28.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F27.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F26.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F25.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F24.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F23.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F22.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F21.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F20.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F19.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F18.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F17.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F16.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F15.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F14.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F13.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F12.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F11.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F10.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F9.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F8.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F7.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F6.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F5.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F4.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F3.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F2.raw  --f \\MRC-ASTRAL\DataSSD\2024\July\20240711\20240713_MJ_Skin_F1.raw  --lib \\Mrc-astral\d\Share\Matthew\20230102_UniprotSwissProt_Human_Cano+Iso - Ox+Ac.predicted.speclib --threads 64 --verbose 1 --out D:\Users\Matt\Skin_PPMI\SpecLib\report.tsv --qvalue 0.01 --matrices --temp D:\Users\Matt\Skin_PPMI\SpecLib --out-lib D:\Users\Matt\Skin_PPMI\SpecLib\Skin_pilot_speclib.tsv --gen-spec-lib --var-mods 1 --var-mod UniMod:35,15.994915,M --individual-mass-acc --individual-windows --smart-profiling --peak-center --no-ifs-removal