Input dataframe containing raw data for processing.
Column name in `df` representing unique identifiers for the dataset (e.g., 'Accession').
Column name or method representing LFQ (Label-Free Quantification) values in the data.
A dictionary mapping sample names to condition and replicate information.
cleaning : bool, optional, default=True
Whether to clean the data by removing contaminants and decoys.
formatting : str or bool, optional, default='auto'
Controls the format of the output dataframe ('auto', True, or False).
transformation : callable, optional, default=np.log2
A transformation function to apply to the data (e.g., log2).
normalization : str, optional, default='None'
Normalization method. Accepted values: 'None', 'Relative', 'Median', 'Quantile'.
valid_values : float, optional, default=0.7
Proportion of valid values required for each row to be retained.
imputation : str, optional, default=''
Method for data imputation. If empty, no imputation is performed.
Additional keyword arguments passed to the imputation function.