1. Cords O, Martinez L, Warren JL, O'Marr JM, Walter KS, Cohen T, et al. Incidence and prevalence of tuberculosis in incarcerated populations: a systematic review and meta-analysis. Lancet Public Health. 2021;6(5):e300-e8. https://doi.org/10.1016/S2468-2667(21)00025-6PMID: 33765455; PMCID: PMC8168455
2. Velen K, Charalambous S. Tuberculosis in prisons: an unintended sentence? Lancet Public Health. 2021;6(5):e263-e4. https://doi.org/10.1016/S2468-2667(21)00049-9 PMID: 33765454.
3. Woodman M, Grandjean L. Detecting tuberculosis in prisons: switching off the disease at
Its source. Clin Infect Dis. 2021;72(5):778-9. https://doi.org/10.1093/cid/ciaa139 PMID: 32064517; PMCID: PMC7935381. 4. Walter KS, Martinez L, Arakaki-Sanchez D, Sequera VG, Estigarribia Sanabria G, Cohen T, et al. The
escalating tuberculosis crisis in central and South American prisons. Lancet. 2021; 397(10284):1591-6. https://doi.org/10.1016/S0140-6736(20)32578-2 PMID: 33838724; PMCID: PMC9393884.
6. Haeusler IL, Torres-Ortiz A, Grandjean L. A systematic review of tuberculosis detection and prevention studies in prisons. Global Public Health. 2022;17(2):194-209. https://doi.org/10.1080/17441692.2020.1864753 PMID: 33427099.
7. World Health Organization. Global Tuberculosis report. 2023. [Cited 2024 March 1]. Available from: https://books.google.co.th/bookshl=th&lr=&id=DTfxEAAAQBAJ&oi=fnd&pg=PA40&dq=Global+tuberculosis+report+2023&ots=o_5vJCq6Nf&sig=FV5PptWFmAEcL7m3qgXA1wp6s64&redir_esc=y#v=onepage&q=Global%20tuberculosis%20report%202023&f=false
8. Su Y, Garcia Baena I, Harle AC, Crosby SW, Micah AE, Siroka A, et al. Tracking total spending on tuberculosis by source and function in 135 low-income and middle-income countries, 2000-17: a financial modelling study. Lancet Infect Dis. 2020;20(8):929-42. https://doi.org/ 10.1016/S1473-3099(20)30124-9 PMID: 32334658; PMCID: PMC7649746.
9. Reid MJA, Arinaminpathy N, Bloom A, Bloom BR, Boehme C, Chaisson R, et al. Building a tuberculosis-free world: The Lancet Commission on tuberculosis. Lancet (London, England). 2019;393(10178):1331-84. https://doi.org/10.1016/S0140-6736(19)30024-8 PMID: 30904263.
10. Urrego J, Ko AI, da Silva Santos Carbone A, Paiao DS, Sgarbi RV, Yeckel CW, et al. The
impact of ventilation and early diagnosis on tuberculosis transmission in Brazilian Prisons. Am J Trop Med Hyg. 2015; 93(4):739–46. https://doi.org/10.4269/ajtmh.15-0166 PMID: 26195459; PMCID: PMC4596592.
11. Cooper-Arnold K, Morse T, Hodgson M, Pettigrew C, Wallace R, Clive J, et al. Occupational
tuberculosis among deputy sheriffs in Connecticut: a risk model of transmission. Appl Occup Environ Hyg. 1999;14(11):768-76. https://doi.org/10.1080/104732299302198 PMID: 10590550.
12. Johnstone-Robertson S, Lawn SD, Welte A, Bekker LG, Wood R. Tuberculosis in a South African prison—a transmission modelling analysis. S Afr Med J. 2011; 101(11):809–13. PMID: 22272961; PMCID:
PMC4538692.
14. Issarow CM, Mulder N, Wood R. Modelling the risk of airborne infectious disease using exhaled air. J Theor Biol. 2015;372:100-6. https://doi.org/10.1016/j.jtbi.2015.02.010 PMID: 25702940.
15. Naning H, Al-Darraji HAA, McDonald S, Ismail NA, Kamarulzaman A. Modelling the impact of different tuberculosis control interventions on the prevalence of tuberculosis in an overcrowded
prison. Asia Pac J Public Health. 2018;30(3):235-43. https://doi.org/10.1177/1010539518757229
PMID: 29502429.
16. Sze To GN, Chao CY. Review and comparison between the Wells-Riley and dose-response approaches to risk assessment of infectious respiratory diseases. Indoor Air. 2010;20(1):2-16. https://doi.org/10.1111/j.1600-0668.2009.00621.x PMID: 19874402; PMCID: PMC7202094.
17. Riley RL. Airborne infection. Am J Med. 1974;57(3):466-75. https://doi.org/10.1016/0002 9343(74)90140-5 PMID: 4212915.
18. Issarow CM, Mulder N, Wood R. Environmental and social factors impacting on epidemic and endemic tuberculosis: a modelling analysis. R Soc Open Sci. 2018;5(1):170726. https://doi.org/10.1098/rsos.170726 PMID: 29410796; PMCID: PMC5792873.
19. Noakes CJ, Beggs CB, Sleigh PA, Kerr KG. Modelling the transmission of airborne infections
in enclosed spaces. Epidemiol Infect. 2006;134(5):1082-91. https://doi.org/10.1017/S0950268806005875
PMID: 16476170; PMCID: PMC2870476.
20. Gabriela MGM, Rodrigues P, Hilker FM, Mantilla-Beniers NB, Muehlen M, Cristina Paulo A, et
al. Implications of partial immunity on the prospects for tuberculosis control by post-exposure interventions. J Theor Biol. 2007;248(4):608-17. https://doi.org/ 10.1016/j.jtbi.2007.06.005
PMID: 17669435.
21. Mahawan N, Rattananupong T, Sri-Uam P, Jiamjarasrangsi W. Assessment of tuberculosis
transmission probability in three Thai prisons based on five dynamic models. PLoS One. 2024 Jul 19;19(7):e0305264. https://doi.org/0.1371/journal.pone.0305264 PMID: 39028741; PMCID: PMC11259261.
22. Lewinsohn DM, Leonard MK, LoBue PA, Cohn DL, Daley CL, Desmond E, et al. Official American
Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clin Infect Dis. 2017;64(2):111-5. https://doi.org/ 10.1093/cid/ciw778 PMID: 28052967; PMCID: PMC5504475.
23. Deb P, Norton EC, Manning WG. Health econometrics using Stata. College Station: Stata Press;
2017.
24. Holodinsky JK, Yu AYX, Kapral MK, Austin PC. Comparing regression modeling strategies for
predicting hometime. BMC Med Res Methodol. 2021;21(1):138. https://doi.org/10.1186/s12874-021-01331-9 PMID: 34233616; PMCID: PMC8261957. 25. Le DD, Gonzalez RL, Matola JU. Modeling count data for health care utilization: an empirical study of outpatient visits among Vietnamese older people. BMC Med Inform Decis Mak. 2021;21(1):265. https://doi.org/ 10.1186/s12911-021-01619-2 PMID: 34525986; PMCID: PMC8442353.
26. Manjón M, Martínez O. The Chi-Squared Goodness-of-Fit Test for Count-Data Models. The
Stata Journal. 2014;14(4):798-816.
27. Lewis F, Butler A, Gilbert L. A unified approach to model selection using the likelihood
ratio test. Methods in Ecology and Evolution. 2011;2:155–62. https://doi.org/ 10.1111/j.2041-210X.2010.00063.x.
28. Lorah J, Womack A. Value of sample size for computation of the Bayesian information
criterion (BIC) in multilevel modeling. Behav Res Methods. 2019;51(1):440-50. https://doi.org/ 10.3758/s13428-018-1188-3 PMID: 30684229.
29. Raftery AE. Bayesian Model Selection in Social Research. Sociological Methodology.
1995;25:111-63.
30. Van Calster B, McLernon DJ, van Smeden M, Wynants L, Steyerberg EW. Calibration: the Achilles
heel of predictive analytics. BMC Med. 2019;17(1):230. https://doi.org/10.1186/s12916-019-1466-7 PMID: 31842878; PMCID: PMC6912996. 31. Matthay EC, Glymour MM. A Graphical Catalog of Threats to Validity: Linking Social Science
with Epidemiology. Epidemiology. 2020;31(3):376-84. https://doi.org/ 10.1097/EDE.0000000000001161
PMID: 31977593; PMCID: PMC7144753.
32. Iwagami M, Matsui H. Introduction to Clinical Prediction Models. Ann Clin Epidemiol.
2022;4(3):72-80. https://doi.org/ 10.37737/ace.22010 PMID: 38504943; PMCID: PMC10760493.