Jun 12, 2023

Public workspacePARP inhibitors in colorectal malignancies: A 2023 update

  • NIKOLAOS SKOUTERIS1,
  • georgeipap2
  • 1Division of Medical Oncology & Hematopoietic Cell Transplant Unit, Department of Medicine, ''Metaxa'' Cancer Hospital, 51 Botassi Street, 18537 Piraeus, Greece;
  • 22nd Medical Oncology Department, Iaso General Clinic, Athens, Greece
Icon indicating open access to content
QR code linking to this content
Protocol CitationNIKOLAOS SKOUTERIS, georgeipap 2023. PARP inhibitors in colorectal malignancies: A 2023 update. protocols.io https://dx.doi.org/10.17504/protocols.io.dm6gp3ey8vzp/v1
License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License,  which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Protocol status: Working
We use this protocol and it's working
Created: June 10, 2023
Last Modified: June 12, 2023
Protocol Integer ID: 83185
Keywords: PARP inhibitors; CRC; review; clinical trials; HRD; DDR; targeted; combinations; MSI-high; MSS
Abstract
Background: Colorectal carcinoma (CRC) is one of the most common malignancies in the Western world, and metastatic disease is associated with a dismal prognosis. Poly-ADp-ribose polymerase (PARP) inhibitors gain increasing attention in the field of medical oncology, as they lead to synthetic lethality in malignancies with preexisting alterations in the DNA damage repair (DDR) pathway. As those alterations are frequently seen in CRC, a targeted approach through PARP inhibitors is expected to benefit these patients, both alone and in combination with other agents like chemotherapy, immunotherapy, antiangiogenics and radiation.
Methods: In this review, we discuss the rationale for the use of PARP inhibitors in CRC, based on preclinical evidence and data arising from current clinical trials. Furthermore, the few relevant ongoing clinical trials are presented.
Results: Current evidence supports the utilization of PARP inhibitors in CRC subgroups, as monotherapy and in combination with other agents. Up to now, data is insufficient to support a formal indication, and further research is needed.
Conclusion: Efforts to precisely define the homologous repair deficiency (HRD) in CRC – and eventually the subgroup of patients that are expected to benefit the most – are also underway.
Protocol references
Sawicki, T., Ruszkowska, M., Danielewicz, A., Niedźwiedzka, E., Arłukowicz, T., Przybyłowicz, K. E. (2021). A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers, 13(9), 2025. https://doi.org/10.3390/cancers13092025
Zhang, J., Deng, J., Hu, J., Zhong, Q., Li, J., Su, M., et al (2022). Safety and feasibility of neoadjuvant chemotherapy as a surgical bridge for acute left-sided malignant colorectal obstruction: a retrospective study. BMC cancer, 22(1), 806. https://doi.org/10.1186/s12885-022-09906-5
Cercek, A., Lumish, M., Sinopoli, J., Weiss, J., Shia, J., Lamendola-Essel, M., et al (2022). PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer. N Eng J Med, 386(25), 2363–2376. https://doi.org/10.1056/NEJMoa2201445
Biller, L. H.,Schrag, D. (2021). Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA, 325(7), 669–685. https://doi.org/10.1001/jama.2021.0106
Murai, J., Huang, S. Y., Das, B. B., Renaud, A., Zhang, Y., Doroshow, J. H., et al (2012). Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Res, 72(21), 5588–5599. https://doi.org/10.1158/0008-5472.CAN-12-2753
Del Vecchio, F., Mastroiaco, V., Di Marco, A., Compagnoni, C., Capece, D., Zazzeroni, F., et al (2017). Next-generation sequencing: recent applications to the analysis of colorectal cancer. J Transl Med, 15(1), 246. https://doi.org/10.1186/s12967-017-1353-y
Krishnakumar, R.,Kraus, W. L. (2010). The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell, 39(1), 8–24. https://doi.org/10.1016/j.molcel.2010.06.017
Pines, A., Vrouwe, M. G., Marteijn, J. A., Typas, D., Luijsterburg, M. S., Cansoy, M., et al (2012). PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J Cell Biol, 199(2), 235–249. https://doi.org/10.1083/jcb.201112132
Hu, Y., Petit, S. A., Ficarro, S. B., Toomire, K. J., Xie, A., Lim, E., et al (2014). PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination-mediated DNA repair. Cancer Dis, 4(12), 1430–1447. https://doi.org/10.1158/2159-8290.CD-13-0891
Zhao, Q., , Lan, T., , Su, S., ,Rao, Y., (2019). Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule. Chem Comm (Cambridge, England), 55(3), 369–372. https://doi.org/10.1039/c8cc07813k
Rose, M., Burgess, J. T., O'Byrne, K., Richard, D. J., Bolderson, E. (2020). PARP Inhibitors: Clinical Relevance, Mechanisms of Action and Tumor Resistance. Front Cell Dev Biol, 8, 564601. https://doi.org/10.3389/fcell.2020.564601
Alhusaini, A., Cannon, A., Maher, S. G., Reynolds, J. V., Lynam-Lennon, N. (2021). Therapeutic Potential of PARP Inhibitors in the Treatment of Gastrointestinal Cancers. Biomedicines, 9(8), 1024. https://doi.org/10.3390/biomedicines9081024
Thorsell, A. G., Ekblad, T., Karlberg, T., Löw, M., Pinto, A. F., Trésaugues, L., et al (2017). Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors. J Med Chem, 60(4), 1262–1271. https://doi.org/10.1021/acs.jmedchem.6b00990
Mauri, G., Arena, S., Siena, S., Bardelli, A., Sartore-Bianchi, A. (2020). The DNA damage response pathway as a land of therapeutic opportunities for colorectal cancer. Ann Oncol : official journal of the European Society for Medical Oncology, 31(9), 1135–1147. https://doi.org/10.1016/j.annonc.2020.05.027
Uson, P. L. S., Jr, Riegert-Johnson, D., Boardman, L., Kisiel, J., Mountjoy, L., Patel, N., et al (2022). Germline Cancer Susceptibility Gene Testing in Unselected Patients With Colorectal Adenocarcinoma: A Multicenter Prospective Study. Clin Gastroenterol Hepatol, 20(3), e508–e528. https://doi.org/10.1016/j.cgh.2021.04.013
Lord, C. J., Ashworth, A. (2017). PARP inhibitors: Synthetic lethality in the clinic. Science (New York, N.Y.), 355(6330), 1152–1158. https://doi.org/10.1126/science.aam7344
Byrum, A. K., Vindigni, A., Mosammaparast, N. (2019). Defining and Modulating 'BRCAness'. Trends Cell Biol, 29(9), 740–751. https://doi.org/10.1016/j.tcb.2019.06.005
Carden, C. P., Yap, T. A., Kaye, S. B. (2010). PARP inhibition: targeting the Achilles' heel of DNA repair to treat germline and sporadic ovarian cancers. Curr Opin Oncol, 22(5), 473–480. https://doi.org/10.1097/CCO.0b013e32833b5126
Sims, T., Floyd, J., Sood, A., Westin, S., Fellman, B., Unke, J., et al (2022). Correlation of BRCA and HRD status with clinical and survival outcomes in patients with advanced-stage ovarian cancer in the age of PARPI maintenance therapy (187). Gynecol Oncol, 166. https://doi.org/10.1016/s0090-8258(22)01414-7
Tattersall, A., Ryan, N., Wiggans, A. J., Rogozińska, E., Morrison, J. (2022). Poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer. Cochrane Database Syst Rev, 2(2), CD007929. https://doi.org/10.1002/14651858.CD007929.pub4
Pacheco-Barcia, V., Muñoz, A., Castro, E., Ballesteros, A. I., Marquina, G., González-Díaz, I., et al (2022). The Homologous Recombination Deficiency Scar in Advanced Cancer: Agnostic Targeting of Damaged DNA Repair. Cancers, 14(12), 2950. https://doi.org/10.3390/cancers14122950
Curtin, N. J., Drew, Y., Sharma-Saha, S. (2019). Why BRCA mutations are not tumour-agnostic biomarkers for PARP inhibitor therapy. Nature reviews. Clin Oncol, 16(12), 725–726. https://doi.org/10.1038/s41571-019-0285-2
Smith, M., Pothuri, B. (2022). Appropriate Selection of PARP Inhibitors in Ovarian Cancer. Curr Treat Options Oncol, 23(6), 887–903. https://doi.org/10.1007/s11864-022-00938-4
Tung, N., Garber, J. E. (2022). PARP inhibition in breast cancer: progress made and future hopes. NPJ breast cancer, 8(1), 47. https://doi.org/10.1038/s41523-022-00411-3
Brown, T. J., Reiss, K. A. (2021). PARP Inhibitors in Pancreatic Cancer. J Cancer (Sudbury, Mass.), 27(6), 465–475. https://doi.org/10.1097/PPO.0000000000000554
de Bono, J., Mateo, J., Fizazi, K., Saad, F., Shore, N., Sandhu, S., et al (2020). Olaparib for Metastatic Castration-Resistant Prostate Cancer. N Eng J Med, 382(22), 2091–2102. https://doi.org/10.1056/NEJMoa1911440
Abida, W., Patnaik, A., Campbell, D., Shapiro, J., Bryce, A. H., McDermott, R., et al (2020). Rucaparib in Men With Metastatic Castration-Resistant Prostate Cancer Harboring a BRCA1 or BRCA2 Gene Alteration. J Clin Oncol, 38(32), 3763–3772. https://doi.org/10.1200/JCO.20.01035
Clarke, N. W., Armstrong, A. J., Thiery-Vuillemin, A., Oya, M., Shore, N., Loredo, E., et al (2022). Abiraterone and Olaparib for metastatic castration-resistant prostate cancer. NEJM Evid, 1(9). https://doi.org/10.1056/evidoa2200043
Chi, K. N., Rathkopf, D., Smith, M. R., Efstathiou, E., Attard, G., Olmos, D., et al (2023). Niraparib and Abiraterone Acetate for Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol, JCO2201649. Advance online publication. https://doi.org/10.1200/JCO.22.01649
Agarwal, N., Azad, A., Shore, N. D., Carles, J., Fay, A. P., Dunshee, C., et al (2022). Talazoparib plus enzalutamide in metastatic castration-resistant prostate cancer: TALAPRO-2 phase III study design. Future Oncol (London, England), 18(4), 425–436. https://doi.org/10.2217/fon-2021-0811
Dörsam, B., Seiwert, N., Foersch, S., Stroh, S., Nagel, G., Begaliew, D., et al (2018). PARP-1 protects against colorectal tumor induction, but promotes inflammation-driven colorectal tumor progression. Proc Nat Acad Sci USA, 115(17), E4061–E4070. https://doi.org/10.1073/pnas.1712345115
Cai, L., Threadgill, M. D., Wang, Y., Li, M. (2009). Effect of poly (ADP-ribose) polymerase-1 inhibition on the proliferation of murine colon carcinoma CT26 cells. Pathol Oncol Res, 15(3), 323–328. https://doi.org/10.1007/s12253-008-9116-y
Kiszałkiewicz, J. M., Majewski, S., Piotrowski, W. J., Górski, P., Pastuszak-Lewandoska, D., Migdalska-Sęk, M., et al (2021). Evaluation of selected IL6/STAT3 pathway molecules and miRNA expression in chronic obstructive pulmonary disease. Sci Rep, 11(1), 22756. https://doi.org/10.1038/s41598-021-01950-8
Li, M., Threadgill, M. D., Wang, Y., Cai, L., Lin, X. (2009). Poly(ADP-ribose) polymerase inhibition down-regulates expression of metastasis-related genes in CT26 colon carcinoma cells. Pathobiology, 76(3), 108–116. https://doi.org/10.1159/000209388
Yue, J., Zhang, K., Chen, J. (2012). Role of integrins in regulating proteases to mediate extracellular matrix remodeling. Cancer Microenviron, 5(3), 275–283. https://doi.org/10.1007/s12307-012-0101-3
Hiroshi, Y.; Takashi, T.; Masatoshi, H.; Hideaki, K.; Shigekazu, H.; Terumitsu, S.; et al (2002). Elevated Expression of Poly(ADP-Ribose) Polymerase-1 is Associated with Liver Metastasis in Colorectal Cancer. Acta Med. Nagasaki, 47, 111–115.
Freire, M. V., Martin, M., Thissen, R., Van Marcke, C., Segers, K., Sépulchre, E., et al (2022). Case Report Series: Aggressive HR Deficient Colorectal Cancers Related to BRCA1 Pathogenic Germline Variants. Front Oncol, 12, 835581. https://doi.org/10.3389/fonc.2022.835581
Cullinane, C. M., Creavin, B., O'Connell, E. P., Kelly, L., O'Sullivan, M. J., Corrigan, M. A., et al (2020). Risk of colorectal cancer associated with BRCA1 and/or BRCA2 mutation carriers: systematic review and meta-analysis. Brit J Surg, 107(8), 951–959. https://doi.org/10.1002/bjs.11603
Wang, C., Jette, N., Moussienko, D., Bebb, D. G., Lees-Miller, S. P. (2017). ATM-Deficient Colorectal Cancer Cells Are Sensitive to the PARP Inhibitor Olaparib. Transl Oncol, 10(2), 190–196. https://doi.org/10.1016/j.tranon.2017.01.007
Ozden, O., Bishehsari, F., Bauer, J., Park, S. H., Jana, A., Baik, S. H., et al (2016). Expression of an Oncogenic BARD1 Splice Variant Impairs Homologous Recombination and Predicts Response to PARP-1 Inhibitor Therapy in Colon Cancer. Sci Rep, 6, 26273. https://doi.org/10.1038/srep26273
Lee, M. S., Kopetz, S. (2022). Are Homologous Recombination Deficiency Mutations Relevant in Colorectal Cancer?. J Natl Cancer Inst, 114(2), 176–178. https://doi.org/10.1093/jnci/djab170
Moretto, R., Elliott, A., Zhang, J., Arai, H., Germani, M. M., Conca, V., et al (2022). Homologous Recombination Deficiency Alterations in Colorectal Cancer: Clinical, Molecular, and Prognostic Implications. J Natl Cancer Inst, 114(2), 271–279. https://doi.org/10.1093/jnci/djab169
Sundar, R., Miranda, S., Rodrigues, D. N., Chénard-Poirier, M., Dolling, D., Clarke, M., et al (2018). Ataxia Telangiectasia Mutated Protein Loss and Benefit From Oxaliplatin-based Chemotherapy in Colorectal Cancer. Clin Colorectal Cancer, 17(4), 280–284. https://doi.org/10.1016/j.clcc.2018.05.011
Bakkenist, C. J., Lee, J. J., Schmitz, J. C. (2018). ATM Is Required for the Repair of Oxaliplatin-Induced DNA Damage in Colorectal Cancer. Clin Colorectal Cancer, 17(4), 255–257. https://doi.org/10.1016/j.clcc.2018.09.001
Randon, G., Fucà, G., Rossini, D., Raimondi, A., Pagani, F., Perrone, F., et al (2019). Prognostic impact of ATM mutations in patients with metastatic colorectal cancer. Sci Rep, 9(1), 2858. https://doi.org/10.1038/s41598-019-39525-3
Tang, X., Lin, Y., He, J., Luo, X., Liang, J., Zhu, X., et al (2022). Establishment and validation of a prognostic model based on HRR-related lncRNAs in colon adenocarcinoma. World J Surg Oncol, 20(1), 74. https://doi.org/10.1186/s12957-022-02534-0
Heeke, A. L., Pishvaian, M. J., Lynce, F., Xiu, J., Brody, J. R., Chen, W. J., et al (2018). Prevalence of Homologous Recombination-Related Gene Mutations Across Multiple Cancer Types. JCO Precis Oncol, 2018, PO.17.00286. https://doi.org/10.1200/PO.17.00286
Smeby, J., Kryeziu, K., Berg, K. C. G., Eilertsen, I. A., Eide, P. W., Johannessen, B., et al (2020). Molecular correlates of sensitivity to PARP inhibition beyond homologous recombination deficiency in pre-clinical models of colorectal cancer point to wild-type TP53 activity. EBioMedicine, 59, 102923. https://doi.org/10.1016/j.ebiom.2020.102923
Leichman, L., Groshen, S., O'Neil, B. H., Messersmith, W., Berlin, J., Chan, E., et al (2016). Phase II Study of Olaparib (AZD-2281) After Standard Systemic Therapies for Disseminated Colorectal Cancer. Oncologist, 21(2), 172–177. https://doi.org/10.1634/theoncologist.2015-0319
Donawho, C. K., Luo, Y., Luo, Y., Penning, T. D., Bauch, J. L., Bouska, J. J., et al (2007). ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res, 13(9), 2728–2737. https://doi.org/10.1158/1078-0432.CCR-06-3039
Ghiringhelli, F., Richard, C., Chevrier, S., Végran, F., Boidot, R. (2016). Efficiency of olaparib in colorectal cancer patients with an alteration of the homologous repair protein. World J Gastroenterol, 22(48), 10680–10686. https://doi.org/10.3748/wjg.v22.i48.10680
Stewart, M. D., Merino Vega, D., Arend, R. C., Baden, J. F., Barbash, O., Beaubier, N., et al (2022). Homologous Recombination Deficiency: Concepts, Definitions, and Assays. Oncologist, 27(3), 167–174. https://doi.org/10.1093/oncolo/oyab053
Wang, J., He, H., Xu, W., Chen, J. (2023). Positive response to niraparib in chemo-refractory patients with metastatic appendiceal mucinous adenocarcinoma harboring ATM mutations: A case report. Front Oncol, 13, 1010871. https://doi.org/10.3389/fonc.2023.1010871
González-Martín, A., Pothuri, B., Vergote, I., DePont Christensen, R., Graybill, W., Mirza, M. R., et al (2019). Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N Eng J Med, 381(25), 2391–2402. https://doi.org/10.1056/NEJMoa1910962
Xu, K., Chen, Z., Cui, Y., Qin, C., He, Y., Song, X. (2015). Combined olaparib and oxaliplatin inhibits tumor proliferation and induces G2/M arrest and γ-H2AX foci formation in colorectal cancer. OncoTargets Ther, 8, 3047–3054. https://doi.org/10.2147/OTT.S89154
Genther Williams, S. M., Kuznicki, A. M., Andrade, P., Dolinski, B. M., Elbi, C., O'Hagan, R. C., et al (2015). Treatment with the PARP inhibitor, niraparib, sensitizes colorectal cancer cell lines to irinotecan regardless of MSI/MSS status. Cancer Cell Int, 15(1), 14. https://doi.org/10.1186/s12935-015-0162-8
Jarrar, A., Lotti, F., DeVecchio, J., Ferrandon, S., Gantt, G., Mace, A., et al (2019). Poly(ADP-Ribose) Polymerase Inhibition Sensitizes Colorectal Cancer-Initiating Cells to Chemotherapy. Stem Cells, 37(1), 42–53. https://doi.org/10.1002/stem.2929
Berlin, J., Ramanathan, R. K., Strickler, J. H., Subramaniam, D. S., Marshall, J., Kang, Y. K., et al (2018). A phase 1 dose-escalation study of veliparib with bimonthly FOLFIRI in patients with advanced solid tumors. Brit J Cancer, 118(7), 938–946. https://doi.org/10.1038/s41416-018-0003-3
Gorbunova, V., Beck, J. T., Hofheinz, R. D., Garcia-Alfonso, P., Nechaeva, M., Cubillo Gracian, A., et al (2019). A phase 2 randomised study of veliparib plus FOLFIRI±bevacizumab versus placebo plus FOLFIRI±bevacizumab in metastatic colorectal cancer. Brit J Cancer, 120(2), 183–189. https://doi.org/10.1038/s41416-018-0343-z
Pishvaian, M. J., Slack, R. S., Jiang, W., He, A. R., Hwang, J. J., Hankin, A., et al (2018). A phase 2 study of the PARP inhibitor veliparib plus temozolomide in patients with heavily pretreated metastatic colorectal cancer. Cancer, 124(11), 2337–2346. https://doi.org/10.1002/cncr.31309
Kummar, S., Chen, A., Ji, J., Zhang, Y., Reid, J. M., Ames, M., et al (2011). Phase I study of PARP inhibitor ABT-888 in combination with topotecan in adults with refractory solid tumors and lymphomas. Cancer Res, 71(17), 5626–5634. https://doi.org/10.1158/0008-5472.CAN-11-1227
Samol, J., Ranson, M., Scott, E., Macpherson, E., Carmichael, J., Thomas, A., et al (2012). Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: a phase I study. Invest New Drugs, 30(4), 1493–1500. https://doi.org/10.1007/s10637-011-9682-9
Illuzzi, G., Staniszewska, A. D., Gill, S. J., Pike, A., McWilliams, L., Critchlow, S. E., et al (2022). Preclinical Characterization of AZD5305, A Next-Generation, Highly Selective PARP1 Inhibitor and Trapper. Clin Cancer Res, 28(21), 4724–4736. https://doi.org/10.1158/1078-0432.CCR-22-0301
Jette, N. R., Kumar, M., Radhamani, S., Arthur, G., Goutam, S., Yip, S., et al (2020). ATM-Deficient Cancers Provide New Opportunities for Precision Oncology. Cancers, 12(3), 687. https://doi.org/10.3390/cancers12030687
Vitiello, P. P., Martini, G., Mele, L., Giunta, E. F., De Falco, V., Ciardiello, D., et al (2021). Vulnerability to low-dose combination of irinotecan and niraparib in ATM-mutated colorectal cancer. J Exp Clin Cancer Res, 40(1), 15. https://doi.org/10.1186/s13046-020-01811-8
Augustine, T., Maitra, R., Zhang, J., Nayak, J., Goel, S. (2019). Sensitization of colorectal cancer to irinotecan therapy by PARP inhibitor rucaparib. Invest New Drugs, 37(5), 948–960. https://doi.org/10.1007/s10637-018-00717-9
Chen, E. X., Jonker, D. J., Siu, L. L., McKeever, K., Keller, D., Wells, J., et al (2016). A Phase I study of olaparib and irinotecan in patients with colorectal cancer: Canadian Cancer Trials Group IND 187. Invest New Drugs, 34(4), 450–457. https://doi.org/10.1007/s10637-016-0351-x
Papageorgiou, G. I., Fergadis, E., Skouteris, N., Christakos, E., Tsakatikas, S. A., Lianos, E., et al (2021). Case Report: Combination of Olaparib With Chemotherapy in a Patient With ATM-Deficient Colorectal Cancer. Front Oncol, 11, 788809. https://doi.org/10.3389/fonc.2021.788809
Arena, S., Corti, G., Durinikova, E., Montone, M., Reilly, N. M., Russo, M., et al (2020). A Subset of Colorectal Cancers with Cross-Sensitivity to Olaparib and Oxaliplatin. Clin Cancer Res, 26(6), 1372–1384. https://doi.org/10.1158/1078-0432.CCR-19-2409
Ma, W. W., Zemla, T. J., Walden, D., McWilliams, R. R., Shaib, W. L., Ahn, D. H., et al (2022). A phase I study of pharmacokinetic (pk)-driven sequential dosing of Rucaparib (RUB) with irinotecan liposome (NAL-IRI) and Fluorouracil (5fu) in metastatic gastrointestinal (MGI) and pancreas (PANC) cancers. J Clin Oncol, 40(4_suppl), 563–563. https://doi.org/10.1200/jco.2022.40.4_suppl.563
Lee A. (2021). Fuzuloparib: First Approval. Drugs, 81(10), 1221–1226. https://doi.org/10.1007/s40265-021-01541-x
de Castro E Gloria, H., Jesuíno Nogueira, L., Bencke Grudzinski, P., da Costa Ghignatti, P. V., Guecheva, T. N., Motta Leguisamo, N., et al (2021). Olaparib-mediated enhancement of 5-fluorouracil cytotoxicity in mismatch repair deficient colorectal cancer cells. BMC cancer, 21(1), 448. https://doi.org/10.1186/s12885-021-08188-7
Jover, R., Zapater, P., Castells, A., Llor, X., Andreu, M., Cubiella, J., et al (2009). The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status. Europ J Cancer (Oxford, England : 1990), 45(3), 365–373. https://doi.org/10.1016/j.ejca.2008.07.016
Vikas, P., Borcherding, N., Chennamadhavuni, A., Garje, R. (2020). Therapeutic Potential of Combining PARP Inhibitor and Immunotherapy in Solid Tumors. Front Oncol, 10, 570. https://doi.org/10.3389/fonc.2020.00570
Seyedin, S. N., Hasibuzzaman, M. M., Pham, V., Petronek, M. S., Callaghan, C., Kalen, A. L., et al (2020). Combination Therapy with Radiation and PARP Inhibition Enhances Responsiveness to Anti-PD-1 Therapy in Colorectal Tumor Models. Int J Radiat Oncol Biol Phys, 108(1), 81–92. https://doi.org/10.1016/j.ijrobp.2020.01.030
Franzese, O., Graziani, G. (2022). Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers, 14(22), 5633. https://doi.org/10.3390/cancers14225633
Borcoman, E., Kanjanapan, Y., Champiat, S., Kato, S., Servois, V., Kurzrock, R., et al (2019). Novel patterns of response under immunotherapy. Ann Oncol, 30(3), 385–396. https://doi.org/10.1093/annonc/mdz003
Stover, E. H., Fuh, K., Konstantinopoulos, P. A., Matulonis, U. A., Liu, J. F. (2020). Clinical assays for assessment of homologous recombination DNA repair deficiency. Gynecol Oncol, 159(3), 887–898. https://doi.org/10.1016/j.ygyno.2020.09.029
Zimmer, A. S., Nichols, E., Cimino-Mathews, A., Peer, C., Cao, L., Lee, M. J., et al (2019). A phase I study of the PD-L1 inhibitor, durvalumab, in combination with a PARP inhibitor, olaparib, and a VEGFR1-3 inhibitor, cediranib, in recurrent women's cancers with biomarker analyses. J Immunother Cancer, 7(1), 197. https://doi.org/10.1186/s40425-019-0680-3
Karzai, F., VanderWeele, D., Madan, R. A., Owens, H., Cordes, L. M., Hankin, A., et al (2018). Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J Immunother Cancer, 6(1), 141. https://doi.org/10.1186/s40425-018-0463-2
Czito, B. G., Deming, D. A., Jameson, G. S., Mulcahy, M. F., Vaghefi, H., Dudley, M. W., et al (2017). Safety and tolerability of veliparib combined with capecitabine plus radiotherapy in patients with locally advanced rectal cancer: a phase 1b study. Lancet Gastroenterol Hepatol, 2(6), 418–426. https://doi.org/10.1016/S2468-1253(17)30012-2
George, T. J., Yothers, G., Hong, T. S., Russell, M. M. G., You, Y. N., Parker, W., et al (2019). NRG-GI002: A phase II clinical trial platform using total neoadjuvant therapy (TNT) in locally advanced rectal cancer (larc)—first experimental arm (EA) initial results. J Clin Oncol, 37(15_suppl), 3505–3505. https://doi.org/10.1200/jco.2019.37.15_suppl.3505
Ray-Coquard, I., Pautier, P., Pignata, S., Pérol, D., González-Martín, A., Berger, R., et al (2019). Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer. N Eng J Med, 381(25), 2416–2428. https://doi.org/10.1056/NEJMoa1911361
Veneris, J. T., Matulonis, U. A., Liu, J. F., Konstantinopoulos, P. A. (2020). Choosing wisely: Selecting PARP inhibitor combinations to promote anti-tumor immune responses beyond BRCA mutations. Gynecol Oncol, 156(2), 488–497. https://doi.org/10.1016/j.ygyno.2019.09.021
Kim, T. W., Taieb, J., Gurary, E. B., Lerman, N., Cui, K., Yoshino, T. (2021). Olaparib with or without bevacizumab or bevacizumab and 5-fluorouracil in advanced colorectal cancer: Phase III LYNK-003. Future Oncol, 17(36), 5013–5022. https://doi.org/10.2217/fon-2021-0899Sawicki, T., Ruszkowska, M., Danielewicz, A., Niedźwiedzka, E., Arłukowicz, T., Przybyłowicz, K. E. (2021). A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers, 13(9), 2025. https://doi.org/10.3390/cancers13092025
Zhang, J., Deng, J., Hu, J., Zhong, Q., Li, J., Su, M., et al (2022). Safety and feasibility of neoadjuvant chemotherapy as a surgical bridge for acute left-sided malignant colorectal obstruction: a retrospective study. BMC cancer, 22(1), 806. https://doi.org/10.1186/s12885-022-09906-5
Cercek, A., Lumish, M., Sinopoli, J., Weiss, J., Shia, J., Lamendola-Essel, M., et al (2022). PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer. N Eng J Med, 386(25), 2363–2376. https://doi.org/10.1056/NEJMoa2201445
Biller, L. H.,Schrag, D. (2021). Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA, 325(7), 669–685. https://doi.org/10.1001/jama.2021.0106
Murai, J., Huang, S. Y., Das, B. B., Renaud, A., Zhang, Y., Doroshow, J. H., et al (2012). Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Res, 72(21), 5588–5599. https://doi.org/10.1158/0008-5472.CAN-12-2753
Del Vecchio, F., Mastroiaco, V., Di Marco, A., Compagnoni, C., Capece, D., Zazzeroni, F., et al (2017). Next-generation sequencing: recent applications to the analysis of colorectal cancer. J Transl Med, 15(1), 246. https://doi.org/10.1186/s12967-017-1353-y
Krishnakumar, R.,Kraus, W. L. (2010). The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell, 39(1), 8–24. https://doi.org/10.1016/j.molcel.2010.06.017
Pines, A., Vrouwe, M. G., Marteijn, J. A., Typas, D., Luijsterburg, M. S., Cansoy, M., et al (2012). PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J Cell Biol, 199(2), 235–249. https://doi.org/10.1083/jcb.201112132
Hu, Y., Petit, S. A., Ficarro, S. B., Toomire, K. J., Xie, A., Lim, E., et al (2014). PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination-mediated DNA repair. Cancer Dis, 4(12), 1430–1447. https://doi.org/10.1158/2159-8290.CD-13-0891
Zhao, Q., , Lan, T., , Su, S., ,Rao, Y., (2019). Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule. Chem Comm (Cambridge, England), 55(3), 369–372. https://doi.org/10.1039/c8cc07813k
Rose, M., Burgess, J. T., O'Byrne, K., Richard, D. J., Bolderson, E. (2020). PARP Inhibitors: Clinical Relevance, Mechanisms of Action and Tumor Resistance. Front Cell Dev Biol, 8, 564601. https://doi.org/10.3389/fcell.2020.564601
Alhusaini, A., Cannon, A., Maher, S. G., Reynolds, J. V., Lynam-Lennon, N. (2021). Therapeutic Potential of PARP Inhibitors in the Treatment of Gastrointestinal Cancers. Biomedicines, 9(8), 1024. https://doi.org/10.3390/biomedicines9081024
Thorsell, A. G., Ekblad, T., Karlberg, T., Löw, M., Pinto, A. F., Trésaugues, L., et al (2017). Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors. J Med Chem, 60(4), 1262–1271. https://doi.org/10.1021/acs.jmedchem.6b00990
Mauri, G., Arena, S., Siena, S., Bardelli, A., Sartore-Bianchi, A. (2020). The DNA damage response pathway as a land of therapeutic opportunities for colorectal cancer. Ann Oncol : official journal of the European Society for Medical Oncology, 31(9), 1135–1147. https://doi.org/10.1016/j.annonc.2020.05.027
Uson, P. L. S., Jr, Riegert-Johnson, D., Boardman, L., Kisiel, J., Mountjoy, L., Patel, N., et al (2022). Germline Cancer Susceptibility Gene Testing in Unselected Patients With Colorectal Adenocarcinoma: A Multicenter Prospective Study. Clin Gastroenterol Hepatol, 20(3), e508–e528. https://doi.org/10.1016/j.cgh.2021.04.013
Lord, C. J., Ashworth, A. (2017). PARP inhibitors: Synthetic lethality in the clinic. Science (New York, N.Y.), 355(6330), 1152–1158. https://doi.org/10.1126/science.aam7344
Byrum, A. K., Vindigni, A., Mosammaparast, N. (2019). Defining and Modulating 'BRCAness'. Trends Cell Biol, 29(9), 740–751. https://doi.org/10.1016/j.tcb.2019.06.005
Carden, C. P., Yap, T. A., Kaye, S. B. (2010). PARP inhibition: targeting the Achilles' heel of DNA repair to treat germline and sporadic ovarian cancers. Curr Opin Oncol, 22(5), 473–480. https://doi.org/10.1097/CCO.0b013e32833b5126
Sims, T., Floyd, J., Sood, A., Westin, S., Fellman, B., Unke, J., et al (2022). Correlation of BRCA and HRD status with clinical and survival outcomes in patients with advanced-stage ovarian cancer in the age of PARPI maintenance therapy (187). Gynecol Oncol, 166. https://doi.org/10.1016/s0090-8258(22)01414-7
Tattersall, A., Ryan, N., Wiggans, A. J., Rogozińska, E., Morrison, J. (2022). Poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer. Cochrane Database Syst Rev, 2(2), CD007929. https://doi.org/10.1002/14651858.CD007929.pub4
Pacheco-Barcia, V., Muñoz, A., Castro, E., Ballesteros, A. I., Marquina, G., González-Díaz, I., et al (2022). The Homologous Recombination Deficiency Scar in Advanced Cancer: Agnostic Targeting of Damaged DNA Repair. Cancers, 14(12), 2950. https://doi.org/10.3390/cancers14122950
Curtin, N. J., Drew, Y., Sharma-Saha, S. (2019). Why BRCA mutations are not tumour-agnostic biomarkers for PARP inhibitor therapy. Nature reviews. Clin Oncol, 16(12), 725–726. https://doi.org/10.1038/s41571-019-0285-2
Smith, M., Pothuri, B. (2022). Appropriate Selection of PARP Inhibitors in Ovarian Cancer. Curr Treat Options Oncol, 23(6), 887–903. https://doi.org/10.1007/s11864-022-00938-4
Tung, N., Garber, J. E. (2022). PARP inhibition in breast cancer: progress made and future hopes. NPJ breast cancer, 8(1), 47. https://doi.org/10.1038/s41523-022-00411-3
Brown, T. J., Reiss, K. A. (2021). PARP Inhibitors in Pancreatic Cancer. J Cancer (Sudbury, Mass.), 27(6), 465–475. https://doi.org/10.1097/PPO.0000000000000554
de Bono, J., Mateo, J., Fizazi, K., Saad, F., Shore, N., Sandhu, S., et al (2020). Olaparib for Metastatic Castration-Resistant Prostate Cancer. N Eng J Med, 382(22), 2091–2102. https://doi.org/10.1056/NEJMoa1911440
Abida, W., Patnaik, A., Campbell, D., Shapiro, J., Bryce, A. H., McDermott, R., et al (2020). Rucaparib in Men With Metastatic Castration-Resistant Prostate Cancer Harboring a BRCA1 or BRCA2 Gene Alteration. J Clin Oncol, 38(32), 3763–3772. https://doi.org/10.1200/JCO.20.01035
Clarke, N. W., Armstrong, A. J., Thiery-Vuillemin, A., Oya, M., Shore, N., Loredo, E., et al (2022). Abiraterone and Olaparib for metastatic castration-resistant prostate cancer. NEJM Evid, 1(9). https://doi.org/10.1056/evidoa2200043
Chi, K. N., Rathkopf, D., Smith, M. R., Efstathiou, E., Attard, G., Olmos, D., et al (2023). Niraparib and Abiraterone Acetate for Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol, JCO2201649. Advance online publication. https://doi.org/10.1200/JCO.22.01649
Agarwal, N., Azad, A., Shore, N. D., Carles, J., Fay, A. P., Dunshee, C., et al (2022). Talazoparib plus enzalutamide in metastatic castration-resistant prostate cancer: TALAPRO-2 phase III study design. Future Oncol (London, England), 18(4), 425–436. https://doi.org/10.2217/fon-2021-0811
Dörsam, B., Seiwert, N., Foersch, S., Stroh, S., Nagel, G., Begaliew, D., et al (2018). PARP-1 protects against colorectal tumor induction, but promotes inflammation-driven colorectal tumor progression. Proc Nat Acad Sci USA, 115(17), E4061–E4070. https://doi.org/10.1073/pnas.1712345115
Cai, L., Threadgill, M. D., Wang, Y., Li, M. (2009). Effect of poly (ADP-ribose) polymerase-1 inhibition on the proliferation of murine colon carcinoma CT26 cells. Pathol Oncol Res, 15(3), 323–328. https://doi.org/10.1007/s12253-008-9116-y
Kiszałkiewicz, J. M., Majewski, S., Piotrowski, W. J., Górski, P., Pastuszak-Lewandoska, D., Migdalska-Sęk, M., et al (2021). Evaluation of selected IL6/STAT3 pathway molecules and miRNA expression in chronic obstructive pulmonary disease. Sci Rep, 11(1), 22756. https://doi.org/10.1038/s41598-021-01950-8
Li, M., Threadgill, M. D., Wang, Y., Cai, L., Lin, X. (2009). Poly(ADP-ribose) polymerase inhibition down-regulates expression of metastasis-related genes in CT26 colon carcinoma cells. Pathobiology, 76(3), 108–116. https://doi.org/10.1159/000209388
Yue, J., Zhang, K., Chen, J. (2012). Role of integrins in regulating proteases to mediate extracellular matrix remodeling. Cancer Microenviron, 5(3), 275–283. https://doi.org/10.1007/s12307-012-0101-3
Hiroshi, Y.; Takashi, T.; Masatoshi, H.; Hideaki, K.; Shigekazu, H.; Terumitsu, S.; et al (2002). Elevated Expression of Poly(ADP-Ribose) Polymerase-1 is Associated with Liver Metastasis in Colorectal Cancer. Acta Med. Nagasaki, 47, 111–115.
Freire, M. V., Martin, M., Thissen, R., Van Marcke, C., Segers, K., Sépulchre, E., et al (2022). Case Report Series: Aggressive HR Deficient Colorectal Cancers Related to BRCA1 Pathogenic Germline Variants. Front Oncol, 12, 835581. https://doi.org/10.3389/fonc.2022.835581
Cullinane, C. M., Creavin, B., O'Connell, E. P., Kelly, L., O'Sullivan, M. J., Corrigan, M. A., et al (2020). Risk of colorectal cancer associated with BRCA1 and/or BRCA2 mutation carriers: systematic review and meta-analysis. Brit J Surg, 107(8), 951–959. https://doi.org/10.1002/bjs.11603
Wang, C., Jette, N., Moussienko, D., Bebb, D. G., Lees-Miller, S. P. (2017). ATM-Deficient Colorectal Cancer Cells Are Sensitive to the PARP Inhibitor Olaparib. Transl Oncol, 10(2), 190–196. https://doi.org/10.1016/j.tranon.2017.01.007
Ozden, O., Bishehsari, F., Bauer, J., Park, S. H., Jana, A., Baik, S. H., et al (2016). Expression of an Oncogenic BARD1 Splice Variant Impairs Homologous Recombination and Predicts Response to PARP-1 Inhibitor Therapy in Colon Cancer. Sci Rep, 6, 26273. https://doi.org/10.1038/srep26273
Lee, M. S., Kopetz, S. (2022). Are Homologous Recombination Deficiency Mutations Relevant in Colorectal Cancer?. J Natl Cancer Inst, 114(2), 176–178. https://doi.org/10.1093/jnci/djab170
Moretto, R., Elliott, A., Zhang, J., Arai, H., Germani, M. M., Conca, V., et al (2022). Homologous Recombination Deficiency Alterations in Colorectal Cancer: Clinical, Molecular, and Prognostic Implications. J Natl Cancer Inst, 114(2), 271–279. https://doi.org/10.1093/jnci/djab169
Sundar, R., Miranda, S., Rodrigues, D. N., Chénard-Poirier, M., Dolling, D., Clarke, M., et al (2018). Ataxia Telangiectasia Mutated Protein Loss and Benefit From Oxaliplatin-based Chemotherapy in Colorectal Cancer. Clin Colorectal Cancer, 17(4), 280–284. https://doi.org/10.1016/j.clcc.2018.05.011
Bakkenist, C. J., Lee, J. J., Schmitz, J. C. (2018). ATM Is Required for the Repair of Oxaliplatin-Induced DNA Damage in Colorectal Cancer. Clin Colorectal Cancer, 17(4), 255–257. https://doi.org/10.1016/j.clcc.2018.09.001
Randon, G., Fucà, G., Rossini, D., Raimondi, A., Pagani, F., Perrone, F., et al (2019). Prognostic impact of ATM mutations in patients with metastatic colorectal cancer. Sci Rep, 9(1), 2858. https://doi.org/10.1038/s41598-019-39525-3
Tang, X., Lin, Y., He, J., Luo, X., Liang, J., Zhu, X., et al (2022). Establishment and validation of a prognostic model based on HRR-related lncRNAs in colon adenocarcinoma. World J Surg Oncol, 20(1), 74. https://doi.org/10.1186/s12957-022-02534-0
Heeke, A. L., Pishvaian, M. J., Lynce, F., Xiu, J., Brody, J. R., Chen, W. J., et al (2018). Prevalence of Homologous Recombination-Related Gene Mutations Across Multiple Cancer Types. JCO Precis Oncol, 2018, PO.17.00286. https://doi.org/10.1200/PO.17.00286
Smeby, J., Kryeziu, K., Berg, K. C. G., Eilertsen, I. A., Eide, P. W., Johannessen, B., et al (2020). Molecular correlates of sensitivity to PARP inhibition beyond homologous recombination deficiency in pre-clinical models of colorectal cancer point to wild-type TP53 activity. EBioMedicine, 59, 102923. https://doi.org/10.1016/j.ebiom.2020.102923
Leichman, L., Groshen, S., O'Neil, B. H., Messersmith, W., Berlin, J., Chan, E., et al (2016). Phase II Study of Olaparib (AZD-2281) After Standard Systemic Therapies for Disseminated Colorectal Cancer. Oncologist, 21(2), 172–177. https://doi.org/10.1634/theoncologist.2015-0319
Donawho, C. K., Luo, Y., Luo, Y., Penning, T. D., Bauch, J. L., Bouska, J. J., et al (2007). ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res, 13(9), 2728–2737. https://doi.org/10.1158/1078-0432.CCR-06-3039
Ghiringhelli, F., Richard, C., Chevrier, S., Végran, F., Boidot, R. (2016). Efficiency of olaparib in colorectal cancer patients with an alteration of the homologous repair protein. World J Gastroenterol, 22(48), 10680–10686. https://doi.org/10.3748/wjg.v22.i48.10680
Stewart, M. D., Merino Vega, D., Arend, R. C., Baden, J. F., Barbash, O., Beaubier, N., et al (2022). Homologous Recombination Deficiency: Concepts, Definitions, and Assays. Oncologist, 27(3), 167–174. https://doi.org/10.1093/oncolo/oyab053
Wang, J., He, H., Xu, W., Chen, J. (2023). Positive response to niraparib in chemo-refractory patients with metastatic appendiceal mucinous adenocarcinoma harboring ATM mutations: A case report. Front Oncol, 13, 1010871. https://doi.org/10.3389/fonc.2023.1010871
González-Martín, A., Pothuri, B., Vergote, I., DePont Christensen, R., Graybill, W., Mirza, M. R., et al (2019). Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N Eng J Med, 381(25), 2391–2402. https://doi.org/10.1056/NEJMoa1910962
Xu, K., Chen, Z., Cui, Y., Qin, C., He, Y., Song, X. (2015). Combined olaparib and oxaliplatin inhibits tumor proliferation and induces G2/M arrest and γ-H2AX foci formation in colorectal cancer. OncoTargets Ther, 8, 3047–3054. https://doi.org/10.2147/OTT.S89154
Genther Williams, S. M., Kuznicki, A. M., Andrade, P., Dolinski, B. M., Elbi, C., O'Hagan, R. C., et al (2015). Treatment with the PARP inhibitor, niraparib, sensitizes colorectal cancer cell lines to irinotecan regardless of MSI/MSS status. Cancer Cell Int, 15(1), 14. https://doi.org/10.1186/s12935-015-0162-8
Jarrar, A., Lotti, F., DeVecchio, J., Ferrandon, S., Gantt, G., Mace, A., et al (2019). Poly(ADP-Ribose) Polymerase Inhibition Sensitizes Colorectal Cancer-Initiating Cells to Chemotherapy. Stem Cells, 37(1), 42–53. https://doi.org/10.1002/stem.2929
Berlin, J., Ramanathan, R. K., Strickler, J. H., Subramaniam, D. S., Marshall, J., Kang, Y. K., et al (2018). A phase 1 dose-escalation study of veliparib with bimonthly FOLFIRI in patients with advanced solid tumors. Brit J Cancer, 118(7), 938–946. https://doi.org/10.1038/s41416-018-0003-3
Gorbunova, V., Beck, J. T., Hofheinz, R. D., Garcia-Alfonso, P., Nechaeva, M., Cubillo Gracian, A., et al (2019). A phase 2 randomised study of veliparib plus FOLFIRI±bevacizumab versus placebo plus FOLFIRI±bevacizumab in metastatic colorectal cancer. Brit J Cancer, 120(2), 183–189. https://doi.org/10.1038/s41416-018-0343-z
Pishvaian, M. J., Slack, R. S., Jiang, W., He, A. R., Hwang, J. J., Hankin, A., et al (2018). A phase 2 study of the PARP inhibitor veliparib plus temozolomide in patients with heavily pretreated metastatic colorectal cancer. Cancer, 124(11), 2337–2346. https://doi.org/10.1002/cncr.31309
Kummar, S., Chen, A., Ji, J., Zhang, Y., Reid, J. M., Ames, M., et al (2011). Phase I study of PARP inhibitor ABT-888 in combination with topotecan in adults with refractory solid tumors and lymphomas. Cancer Res, 71(17), 5626–5634. https://doi.org/10.1158/0008-5472.CAN-11-1227
Samol, J., Ranson, M., Scott, E., Macpherson, E., Carmichael, J., Thomas, A., et al (2012). Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: a phase I study. Invest New Drugs, 30(4), 1493–1500. https://doi.org/10.1007/s10637-011-9682-9
Illuzzi, G., Staniszewska, A. D., Gill, S. J., Pike, A., McWilliams, L., Critchlow, S. E., et al (2022). Preclinical Characterization of AZD5305, A Next-Generation, Highly Selective PARP1 Inhibitor and Trapper. Clin Cancer Res, 28(21), 4724–4736. https://doi.org/10.1158/1078-0432.CCR-22-0301
Jette, N. R., Kumar, M., Radhamani, S., Arthur, G., Goutam, S., Yip, S., et al (2020). ATM-Deficient Cancers Provide New Opportunities for Precision Oncology. Cancers, 12(3), 687. https://doi.org/10.3390/cancers12030687
Vitiello, P. P., Martini, G., Mele, L., Giunta, E. F., De Falco, V., Ciardiello, D., et al (2021). Vulnerability to low-dose combination of irinotecan and niraparib in ATM-mutated colorectal cancer. J Exp Clin Cancer Res, 40(1), 15. https://doi.org/10.1186/s13046-020-01811-8
Augustine, T., Maitra, R., Zhang, J., Nayak, J., Goel, S. (2019). Sensitization of colorectal cancer to irinotecan therapy by PARP inhibitor rucaparib. Invest New Drugs, 37(5), 948–960. https://doi.org/10.1007/s10637-018-00717-9
Chen, E. X., Jonker, D. J., Siu, L. L., McKeever, K., Keller, D., Wells, J., et al (2016). A Phase I study of olaparib and irinotecan in patients with colorectal cancer: Canadian Cancer Trials Group IND 187. Invest New Drugs, 34(4), 450–457. https://doi.org/10.1007/s10637-016-0351-x
Papageorgiou, G. I., Fergadis, E., Skouteris, N., Christakos, E., Tsakatikas, S. A., Lianos, E., et al (2021). Case Report: Combination of Olaparib With Chemotherapy in a Patient With ATM-Deficient Colorectal Cancer. Front Oncol, 11, 788809. https://doi.org/10.3389/fonc.2021.788809
Arena, S., Corti, G., Durinikova, E., Montone, M., Reilly, N. M., Russo, M., et al (2020). A Subset of Colorectal Cancers with Cross-Sensitivity to Olaparib and Oxaliplatin. Clin Cancer Res, 26(6), 1372–1384. https://doi.org/10.1158/1078-0432.CCR-19-2409
Ma, W. W., Zemla, T. J., Walden, D., McWilliams, R. R., Shaib, W. L., Ahn, D. H., et al (2022). A phase I study of pharmacokinetic (pk)-driven sequential dosing of Rucaparib (RUB) with irinotecan liposome (NAL-IRI) and Fluorouracil (5fu) in metastatic gastrointestinal (MGI) and pancreas (PANC) cancers. J Clin Oncol, 40(4_suppl), 563–563. https://doi.org/10.1200/jco.2022.40.4_suppl.563
Lee A. (2021). Fuzuloparib: First Approval. Drugs, 81(10), 1221–1226. https://doi.org/10.1007/s40265-021-01541-x
de Castro E Gloria, H., Jesuíno Nogueira, L., Bencke Grudzinski, P., da Costa Ghignatti, P. V., Guecheva, T. N., Motta Leguisamo, N., et al (2021). Olaparib-mediated enhancement of 5-fluorouracil cytotoxicity in mismatch repair deficient colorectal cancer cells. BMC cancer, 21(1), 448. https://doi.org/10.1186/s12885-021-08188-7
Jover, R., Zapater, P., Castells, A., Llor, X., Andreu, M., Cubiella, J., et al (2009). The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status. Europ J Cancer (Oxford, England : 1990), 45(3), 365–373. https://doi.org/10.1016/j.ejca.2008.07.016
Vikas, P., Borcherding, N., Chennamadhavuni, A., Garje, R. (2020). Therapeutic Potential of Combining PARP Inhibitor and Immunotherapy in Solid Tumors. Front Oncol, 10, 570. https://doi.org/10.3389/fonc.2020.00570
Seyedin, S. N., Hasibuzzaman, M. M., Pham, V., Petronek, M. S., Callaghan, C., Kalen, A. L., et al (2020). Combination Therapy with Radiation and PARP Inhibition Enhances Responsiveness to Anti-PD-1 Therapy in Colorectal Tumor Models. Int J Radiat Oncol Biol Phys, 108(1), 81–92. https://doi.org/10.1016/j.ijrobp.2020.01.030
Franzese, O., Graziani, G. (2022). Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers, 14(22), 5633. https://doi.org/10.3390/cancers14225633
Borcoman, E., Kanjanapan, Y., Champiat, S., Kato, S., Servois, V., Kurzrock, R., et al (2019). Novel patterns of response under immunotherapy. Ann Oncol, 30(3), 385–396. https://doi.org/10.1093/annonc/mdz003
Stover, E. H., Fuh, K., Konstantinopoulos, P. A., Matulonis, U. A., Liu, J. F. (2020). Clinical assays for assessment of homologous recombination DNA repair deficiency. Gynecol Oncol, 159(3), 887–898. https://doi.org/10.1016/j.ygyno.2020.09.029
Zimmer, A. S., Nichols, E., Cimino-Mathews, A., Peer, C., Cao, L., Lee, M. J., et al (2019). A phase I study of the PD-L1 inhibitor, durvalumab, in combination with a PARP inhibitor, olaparib, and a VEGFR1-3 inhibitor, cediranib, in recurrent women's cancers with biomarker analyses. J Immunother Cancer, 7(1), 197. https://doi.org/10.1186/s40425-019-0680-3
Karzai, F., VanderWeele, D., Madan, R. A., Owens, H., Cordes, L. M., Hankin, A., et al (2018). Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J Immunother Cancer, 6(1), 141. https://doi.org/10.1186/s40425-018-0463-2
Czito, B. G., Deming, D. A., Jameson, G. S., Mulcahy, M. F., Vaghefi, H., Dudley, M. W., et al (2017). Safety and tolerability of veliparib combined with capecitabine plus radiotherapy in patients with locally advanced rectal cancer: a phase 1b study. Lancet Gastroenterol Hepatol, 2(6), 418–426. https://doi.org/10.1016/S2468-1253(17)30012-2
George, T. J., Yothers, G., Hong, T. S., Russell, M. M. G., You, Y. N., Parker, W., et al (2019). NRG-GI002: A phase II clinical trial platform using total neoadjuvant therapy (TNT) in locally advanced rectal cancer (larc)—first experimental arm (EA) initial results. J Clin Oncol, 37(15_suppl), 3505–3505. https://doi.org/10.1200/jco.2019.37.15_suppl.3505
Ray-Coquard, I., Pautier, P., Pignata, S., Pérol, D., González-Martín, A., Berger, R., et al (2019). Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer. N Eng J Med, 381(25), 2416–2428. https://doi.org/10.1056/NEJMoa1911361
Veneris, J. T., Matulonis, U. A., Liu, J. F., Konstantinopoulos, P. A. (2020). Choosing wisely: Selecting PARP inhibitor combinations to promote anti-tumor immune responses beyond BRCA mutations. Gynecol Oncol, 156(2), 488–497. https://doi.org/10.1016/j.ygyno.2019.09.021
Kim, T. W., Taieb, J., Gurary, E. B., Lerman, N., Cui, K., Yoshino, T. (2021). Olaparib with or without bevacizumab or bevacizumab and 5-fluorouracil in advanced colorectal cancer: Phase III LYNK-003. Future Oncol, 17(36), 5013–5022. https://doi.org/10.2217/fon-2021-0899