References considered during the development of this NCI BEBP document are listed below (also See Section 9.2 in the Attached PDF) and include hyperlinks to the PubMed abstract and NCI Biospecimen Research Database curation where applicable. References are cited within the Summaries of Literature Evidence (See Section 7.0) in the Attached PDF.
1. Ammerlaan, W. and F. Betsou, Intraindividual Temporal miRNA Variability in Serum, Plasma, and White Blood Cell Subpopulations. Biopreserv Biobank, 2016. 14(5): p. 390-397.
2. Sanz-Rubio, D., et al., Stability of Circulating Exosomal miRNAs in Healthy Subjects. Sci Rep, 2018. 8(1): p. 10306.
3. Sheinerman, K., et al., Age- and sex-dependent changes in levels of circulating brain-enriched microRNAs during normal aging. Aging (Albany NY), 2018. 10(10): p. 3017-3041.
4. Hatse, S., et al., Circulating MicroRNAs as easy-to-measure aging biomarkers in older breast cancer patients: correlation with chronological age but not with fitness/frailty status. PLoS One, 2014. 9(10): p. e110644.
5. Fichtlscherer, S., et al., Circulating microRNAs in patients with coronary artery disease. Circ Res, 2010. 107(5): p. 677-84.
6. Wang, K., et al., Comparing the MicroRNA spectrum between serum and plasma. PLoS One, 2012. 7(7): p. e41561.
7. Feng, X., Y. Liu, and N. Wan, Plasma microRNA detection standardization test. J Clin Lab Anal, 2019. 34(2): p. e23058.
8. Springer, C.B., et al., Circulating MicroRNA Responses to Postprandial Lipemia with or without Prior Exercise. Int J Sports Med, 2021.
9. Marzi, M.J., et al., Optimization and Standardization of Circulating MicroRNA Detection for Clinical Application: The miR-Test Case. Clin Chem, 2016. 62(5): p. 743-54.
10. MacLellan, S.A., et al., Pre-profiling factors influencing serum microRNA levels. BMC Clin Pathol, 2014. 14: p. 27.
11. Kupec, T., et al., Stability of circulating microRNAs in serum. PLoS One, 2022. 17(8): p. e0268958.
12. Chalchat, E., et al., Circulating microRNA levels after exercise-induced muscle damage and the repeated bout effect. Am J Physiol Regul Integr Comp Physiol, 2022.
13. Cheng, H.H., et al., Plasma Processing Conditions Substantially Influence Circulating microRNA Biomarker Levels. PLoS One, 2013. 8(6): p. e64795.
14. Willeit, P., et al., Circulating microRNAs as novel biomarkers for platelet activation. Circ Res, 2013. 112(4): p. 595-600.
15. Foye, C., et al., Comparison of miRNA quantitation by Nanostring in serum and plasma samples. PLoS One, 2017. 12(12): p. e0189165.
16. Murray, M.J., et al., 'Future-proofing' blood processing for measurement of circulating microRNAs in samples from biobanks and prospective clinical trials. Cancer Epidemiol Biomarkers Prev, 2017. 27(2): p. 208-218.
17. Tanriverdi, K., et al., Comparison of RNA isolation and associated methods for extracellular RNA detection by high-throughput quantitative polymerase chain reaction. Anal Biochem, 2016. 501: p. 66-74.
18. McDonald, J.S., et al., Analysis of Circulating MicroRNA: Preanalytical and Analytical Challenges. Clin Chem, 2011. 57(6): p. 833-40.
19. Fauth, M., et al., Validation of extracellular miRNA quantification in blood samples using RT-qPCR. FASEB Bioadv, 2019. 1(8): p. 481-492.
20. Parker, V.L., et al., Profiling microRNAs in uncomplicated pregnancies: Serum vs. plasma. Biomed Rep, 2021. 14(2): p. 24.
21. Shiotsu, H., et al., The Influence of Pre-analytical Factors on the Analysis of Circulating MicroRNA. Microrna, 2018.
22. Mompeón, A., et al., Disparate miRNA expression in serum and plasma of patients with acute myocardial infarction: a systematic and paired comparative analysis. Sci Rep, 2020. 10(1): p. 5373.
23. Mitchell, P.S., et al., Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A, 2008. 105(30): p. 10513-8.
24. Basso, D., et al., Relevance of pre-analytical blood management on the emerging cardiovascular protein biomarkers TWEAK and HMGB1 and on miRNA serum and plasma profiling. Clin Biochem, 2017. 50(4-5): p. 186-193.
25. Kim, D.J., et al., Plasma components affect accuracy of circulating cancer-related microRNA quantitation. J Mol Diagn, 2012. 14(1): p. 71-80.
26. Glinge, C., et al., Stability of Circulating Blood-Based MicroRNAs - Pre-Analytic Methodological Considerations. PLoS One, 2017. 12(2): p. e0167969.
27. Ward Gahlawat, A., et al., Evaluation of Storage Tubes for Combined Analysis of Circulating Nucleic Acids in Liquid Biopsies. Int J Mol Sci, 2019. 20(3).
28. Mussbacher, M., et al., Impact of Anticoagulation and Sample Processing on the Quantification of Human Blood-Derived microRNA Signatures. Cells, 2020. 9(8): p. 1915.
29. Suzuki, K., et al., Establishment of preanalytical conditions for microRNA profile analysis of clinical plasma samples. PLoS One, 2022. 17(12): p. e0278927.
30. Faraldi, M., et al., Study of the preanalytical variables affecting the measurement of clinically relevant free-circulating microRNAs: focus on sample matrix, platelet depletion, and storage conditions. Biochem Med (Zagreb), 2020. 30(1): p. 010703.
31. Zhelankin, A.V., L.N. Iulmetova, and E.I. Sharova, The Impact of the Anticoagulant Type in Blood Collection Tubes on Circulating Extracellular Plasma MicroRNA Profiles Revealed by Small RNA Sequencing. Int J Mol Sci, 2022. 23(18): p. 10340.
32. Olaya, L.F., J.A. Hyett, and S.V. McLennan, Effects of sample processing and storage on the integrity of cell-free miRNAs in maternal plasma. Prenat Diagn, 2017. 37(8): p. 744-749.
33. Poel, D., et al., Evaluation of several methodological challenges in circulating miRNA qPCR studies in patients with head and neck cancer. Exp Mol Med, 2018. 50(3): p. e454.
34. Kim, S.H., et al., Whole Blood Holding Time Prior to Plasma Processing Alters microRNA Expression Profile. Front Genet, 2021. 12: p. 818334.
35. Rice, J., et al., Assay reproducibility in clinical studies of plasma miRNA. PLoS One, 2015. 10(4): p. e0121948.
36. Wu, C.S., et al., Optimized Collection Protocol for Plasma MicroRNA Measurement in Patients with Cardiovascular Disease. Biomed Res Int, 2016. 2016: p. 2901938.
37. Borges, D.P., et al., Impact of Delayed Whole Blood Processing Time on Plasma Levels of miR-1 and miR-423-5p up to 24 Hours. Microrna, 2018.
38. Sun, J., et al., Evaluating the Effects of Storage Conditions on Multiple Cell-Free RNAs in Plasma by High-Throughput Sequencing. Biopreserv Biobank, 2022.
39. Zhao, H., et al., Effects of Preanalytic Variables on Circulating MicroRNAs in Whole Blood. Cancer Epidemiol Biomarkers Prev, 2014. 23(12): p. 2643-8.
40. Benson, E.A. and T.C. Skaar, Incubation of whole blood at room temperature does not alter the plasma concentrations of microRNA-16 and -223. Drug Metab Dispos, 2013. 41(10): p. 1778-81.
41. Pritchard, C.C., et al., Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila), 2012. 5(3): p. 492-7.
42. Kirschner, M.B., et al., The Impact of Hemolysis on Cell-Free microRNA Biomarkers. Front Genet, 2013. 4: p. 94.
43. Kirschner, M.B., et al., Haemolysis during sample preparation alters microRNA content of plasma. PLoS One, 2011. 6(9): p. e24145.
44. Smith, M.D., et al., Haemolysis Detection in MicroRNA-Seq from Clinical Plasma Samples. Genes (Basel), 2022. 13(7).
45. Köberle, V., et al., Differential stability of cell-free circulating microRNAs: implications for their utilization as biomarkers. PLoS One, 2013. 8(9): p. e75184.
46. Blondal, T., et al., Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods, 2013. 59(1): p. S1-6.
47. Page, K., et al., Influence of plasma processing on recovery and analysis of circulating nucleic acids. PLoS One, 2013. 8(10): p. e77963.
48. Binderup, H.G., et al., Pre-storage centrifugation conditions have significant impact on measured microRNA levels in biobanked EDTA plasma samples. Biochem Biophys Rep, 2016. 7: p. 195-200.
49. Mitchell, A.J., et al., Platelets confound the measurement of extracellular miRNA in archived plasma. Sci Rep, 2016. 6: p. 32651.
50. Gevaert, A.B., et al., MicroRNA profiling in plasma samples using qPCR arrays: Recommendations for correct analysis and interpretation. PLoS One, 2018. 13(2): p. e0193173.
51. Ramón-Núñez, L.A., et al., Comparison of protocols and RNA carriers for plasma miRNA isolation. Unraveling RNA carrier influence on miRNA isolation. PLoS One, 2017. 12(10): p. e0187005.
52. Dypås, L.B., et al., MiRNA profiles in blood plasma from mother-child duos in human biobanks and the implication of sample quality: Circulating miRNAs as potential early markers of child health. PLoS One, 2020. 15(4): p. e0231040.
53. Ramzan, F., et al., Comprehensive Profiling of the Circulatory miRNAome Response to a High Protein Diet in Elderly Men: A Potential Role in Inflammatory Response Modulation. Mol Nutr Food Res, 2019. 63(8): p. e1800811.
54. Kloten, V., et al., Multicentric Evaluation of Circulating Plasma MicroRNA Extraction Technologies for the Development of Clinically Feasible Reverse Transcription Quantitative PCR and Next-Generation Sequencing Analytical Work Flows. Clin Chem, 2019.
55. Binderup, H.G., et al., Quantification of microRNA in plasma using probe based TaqMan assays: is microRNA purification required? BMC Res Notes, 2019. 12(1): p. 261.
56. Streleckiene, G., et al., Effects of Quantification Methods, Isolation Kits, Plasma Biobanking, and Hemolysis on Cell-Free DNA Analysis in Plasma. Biopreserv Biobank, 2019.
57. Wang, S., et al., Exosomal MicroRNAs as Liquid Biopsy Biomarkers in Hepatocellular Carcinoma. Onco Targets Ther, 2020. 13: p. 2021-2030.
58. Moon, S., et al., Enrichment of Exosome-Like Extracellular Vesicles from Plasma Suitable for Clinical Vesicular miRNA Biomarker Research. J Clin Med, 2019. 8(11).
59. Binderup, H.G., et al., Quantification of microRNA levels in plasma - Impact of preanalytical and analytical conditions. PLoS One, 2018. 13(7): p. e0201069.
60. Tan, K.M.L., et al., Improved Discrimination of Patients with Breast Cancer from Healthy Controls Using Paper-Based microRNA Expression Profiling of Plasma, Following Precipitation. Clin Chem, 2017. 63(12): p. 1899-1901.
61. Zheng, X.H., et al., Centrifugation: an important pre-analytic procedure that influences plasma microRNA quantification during blood processing. Chin J Cancer, 2013. 32(12): p. 667-72.
62. Faraldi, M., et al., Normalization strategies differently affect circulating miRNA profile associated with the training status. Sci Rep, 2019. 9(1): p. 1584.
63. Muth, D.C., et al., miRNAs in platelet-poor blood plasma and purified RNA are highly stable: a confirmatory study. BMC Res Notes, 2018. 11(1): p. 273.
64. Aiso, T., et al., ANNALS EXPRESS: Degradation of serum microRNAs during transient storage of serum samples at 4°C. Ann Clin Biochem, 2018. 55(1): p. 178-180.
65. Myklebust, M.P., et al., Quantitative PCR Measurement of miR-371a-3p and miR-372-p Is Influenced by Hemolysis. Front Genet, 2019. 10: p. 463.
66. Vogt, J., et al., Variance component analysis of circulating miR-122 in serum from healthy human volunteers. PLoS One, 2019. 14(7): p. e0220406.
67. Hermann, S., et al., Transcriptomic profiling of cell-free and vesicular microRNAs from matched arterial and venous sera. J Extracell Vesicles, 2019. 8(1): p. 1670935.
68. Trakunram, K., et al., MicroRNA Isolation by Trizol-Based Method and Its Stability in Stored Serum and cDNA Derivatives. Asian Pac J Cancer Prev, 2019. 20(6): p. 1641-1647.
69. Brunet-Vega, A., et al., Variability in microRNA recovery from plasma: Comparison of five commercial kits. Anal Biochem, 2015. 488: p. 28-35.
70. Xue, V.W., et al., The Effect of Centrifugal Force in Quantification of Colorectal Cancer-Related mRNA in Plasma Using Targeted Sequencing. Front Genet, 2018. 9: p. 165.
71. Duttagupta, R., et al., Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLoS One, 2011. 6(6): p. e20769.
72. Li, Y., et al., Stability analysis of liver cancer-related microRNAs. Acta Biochim Biophys Sin (Shanghai), 2011. 43(1): p. 69-78.
73. Ge, Q., et al., miRNA in plasma exosome is stable under different storage conditions. Molecules, 2014. 19(2): p. 1568-75.
74. Sourvinou, I.S., A. Markou, and E.S. Lianidou, Quantification of Circulating miRNAs in Plasma: Effect of Preanalytical and Analytical Parameters on Their Isolation and Stability. J Mol Diagn, 2013. 15(6): p. 827-34.
75. Warnement, C.M., M.J. Cismowski, and L.K. Rogers, Optimizing miR-29 measurements in biobanked, heparinized samples. Life Sci, 2019: p. 116894.
76. Balzano, F., et al., miRNA Stability in Frozen Plasma Samples. Molecules, 2015. 20(10): p. 19030-40.
77. Grasedieck, S., et al., Impact of serum storage conditions on microRNA stability. Leukemia, 2012. 26(11): p. 2414-6.
78. Murata, K., et al., Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther, 2010. 12(3): p. R86.
79. Farina, N.H., et al., Standardizing analysis of circulating microRNA: clinical and biological relevance. J Cell Biochem, 2014. 115(5): p. 805-11.
80. Matias-Garcia, P.R., et al., Impact of long-term storage and freeze-thawing on eight circulating microRNAs in plasma samples. PLoS One, 2020. 15(1): p. e0227648.
81. Gilad, S., et al., Serum microRNAs are promising novel biomarkers. PLoS One, 2008. 3(9): p. e3148.
82. Xiang, M., et al., U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem Biophys Res Commun, 2014. 454(1): p. 210-4.
83. Bustos, M.A., et al., A Pilot Study Comparing the Efficacy of Lactate Dehydrogenase Levels Versus Circulating Cell-Free microRNAs in Monitoring Responses to Checkpoint Inhibitor Immunotherapy in Metastatic Melanoma Patients. Cancers (Basel), 2020. 12(11): p. 3361.
84. Tran, K.D., et al., Assessment of Cell-Free microRNA by NGS Whole-Transcriptome Analysis in Cutaneous Melanoma Patients' Blood. Methods Mol Biol, 2021. 2265: p. 475-486.
85. Ono, S., et al., A direct plasma assay of circulating microRNA-210 of hypoxia can identify early systemic metastasis recurrence in melanoma patients. Oncotarget, 2015. 6(9): p. 7053-64.
86. Asaga, S., et al., Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem, 2011. 57(1): p. 84-91.
87. Sedlackova, T., G. Repiska, and G. Minarik, Selection of an optimal method for co-isolation of circulating DNA and miRNA from the plasma of pregnant women. Clin Chem Lab Med, 2014. 52(11): p. 1543-8.
88. Li, X., M. Mauro, and Z. Williams, Comparison of plasma extracellular RNA isolation kits reveals kit-dependent biases. Biotechniques, 2015. 59(1): p. 13-7.
89. Sriram, H., et al., Improved protocol for plasma microRNA extraction and comparison of commercial kits. Biochem Med (Zagreb), 2021. 31(3): p. 030705.
90. Moret, I., et al., Assessing an improved protocol for plasma microRNA extraction. PLoS One, 2013. 8(12): p. e82753.
91. Parker, V.L., et al., Comparison and optimisation of microRNA extraction from the plasma of healthy pregnant women. Mol Med Rep, 2021. 23(4).
92. Wong, R.K.Y., et al., A comparison of RNA extraction and sequencing protocols for detection of small RNAs in plasma. BMC Genomics, 2019. 20(1): p. 446.
93. Roest, H.P., J.N.M. IJzermans, and L.J.W. van der Laan, Evaluation of RNA isolation methods for microRNA quantification in a range of clinical biofluids. BMC Biotechnol, 2021. 21(1): p. 48.
94. Bravo, V., et al., Instability of miRNA and cDNAs derivatives in RNA preparations. Biochem Biophys Res Commun, 2007. 353(4): p. 1052-5.
95. de Gonzalo-Calvo, D., et al., Consensus guidelines for the validation of qRT-PCR assays in clinical research by the CardioRNA consortium. Mol Ther Methods Clin Dev, 2022. 24: p. 171-180.
96. Chekka, L.M.S., T. Langaee, and J.A. Johnson, Comparison of Data Normalization Strategies for Array-Based MicroRNA Profiling Experiments and Identification and Validation of Circulating MicroRNAs as Endogenous Controls in Hypertension. Front Genet, 2022. 13: p. 836636.
97. Landry, P., et al., Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol, 2009. 16(9): p. 961-6.
98. Nagalla, S., et al., Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood, 2011. 117(19): p. 5189-97.
99. Stratz, C., et al., Micro-array profiling exhibits remarkable intra-individual stability of human platelet micro-RNA. Thromb Haemost, 2012. 107(4): p. 634-41.
100. Osman, A. and K. Fälker, Characterization of human platelet microRNA by quantitative PCR coupled with an annotation network for predicted target genes. Platelets, 2011. 22(6): p. 433-41.