References considered during the development of this NCI BEBP document are listed below (also See Section 9.2 in the Attached PDF) and include hyperlinks to the PubMed abstract and NCI Biospecimen Research Database curation where applicable. References are cited within the Summaries of Literature Evidence (See Section 7.0) in the Attached PDF.
1. El Messaoudi, S., et al., Circulating cell free DNA: Preanalytical considerations. Clin Chim Acta, 2013. 424C: p. 222-230.
2. Bronkhorst, A.J., J. Aucamp, and P.J. Pretorius, Cell-free DNA: Preanalytical variables. Clin Chim Acta, 2015. 450: p. 243-53.
3. Lee, T.H., et al., Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma. Transfusion, 2001. 41(2): p. 276-82.
4. Lam, N.Y., et al., EDTA is a better anticoagulant than heparin or citrate for delayed blood processing for plasma DNA analysis. Clin Chem, 2004. 50(1): p. 256-7.
5. van Ginkel, J.H., et al., Preanalytical blood sample workup for cell-free DNA analysis using Droplet Digital PCR for future molecular cancer diagnostics. Cancer Med, 2017. 6(10): p. 2297-2307.
6. Sato, A., et al., Investigation of appropriate pre-analytical procedure for circulating free DNA from liquid biopsy. Oncotarget, 2018. 9(61): p. 31904-31914.
7. Barra, G.B., et al., EDTA-mediated inhibition of DNases protects circulating cell-free DNA from ex vivo degradation in blood samples. Clin Biochem, 2015. 48(15): p. 976-81.
8. Holodniy, M., et al., Inhibition of human immunodeficiency virus gene amplification by heparin. J Clin Microbiol, 1991. 29(4): p. 676-9.
9. Yokota, M., et al., Effects of heparin on polymerase chain reaction for blood white cells. J Clin Lab Anal, 1999. 13(3): p. 133-40.
10. Gautschi, O., et al., Circulating deoxyribonucleic Acid as prognostic marker in non-small-cell lung cancer patients undergoing chemotherapy. J Clin Oncol, 2004. 22(20): p. 4157-64.
11. Kang, Q., et al., Comparative analysis of circulating tumor DNA stability In K3EDTA, Streck, and CellSave blood collection tubes. Clin Biochem, 2016. 49(18): p. 1354-1360.
12. Hidestrand, M., et al., Influence of temperature during transportation on cell-free DNA analysis. Fetal Diagn Ther, 2012. 31(2): p. 122-8.
13. Markus, H., et al., Evaluation of pre-analytical factors affecting plasma DNA analysis. Sci Rep, 2018. 8(1): p. 7375.
14. Warton, K., et al., Evaluation of Streck BCT and PAXgene Stabilised Blood Collection Tubes for Cell-Free Circulating DNA Studies in Plasma. Mol Diagn Ther, 2017.
15. van Dessel, L.F., et al., Application of circulating tumor DNA in prospective clinical oncology trials - standardization of preanalytical conditions. Mol Oncol, 2017. 11(3): p. 295-304.
16. Medina Diaz, I., et al., Performance of Streck cfDNA Blood Collection Tubes for Liquid Biopsy Testing. PLoS One, 2016. 11(11): p. e0166354.
17. Henao Diaz, E., et al., The In Vitro Stability of Circulating Tumour DNA. PLoS One, 2016. 11(12): p. e0168153.
18. Wang, Q., et al., Real-time PCR evaluation of cell-free DNA subjected to various storage and shipping conditions. Genet Mol Res, 2015. 14(4): p. 12797-804.
19. Wong, D., et al., Optimizing blood collection, transport and storage conditions for cell free DNA increases access to prenatal testing. Clin Biochem, 2013. 46(12): p. 1099-104.
20. Norton, S.E., et al., A new blood collection device minimizes cellular DNA release during sample storage and shipping when compared to a standard device. J Clin Lab Anal, 2013. 27(4): p. 305-11.
21. Nikolaev, S., et al., Circulating tumoral DNA: Preanalytical validation and quality control in a diagnostic laboratory. Anal Biochem, 2017.
22. Parpart-Li, S., et al., The Effect of Preservative and Temperature on the Analysis of Circulating Tumor DNA. Clin Cancer Res, 2017. 23(10): p. 2471-2477.
23. Barrett, A.N., et al., Implementing prenatal diagnosis based on cell-free fetal DNA: accurate identification of factors affecting fetal DNA yield. PLoS One, 2011. 6(10): p. e25202.
24. Buysse, K., et al., Reliable noninvasive prenatal testing by massively parallel sequencing of circulating cell-free DNA from maternal plasma processed up to 24h after venipuncture. Clin Biochem, 2013. 46(18): p. 1783-6.
25. Meddeb, R., E. Pisareva, and A.R. Thierry, Guidelines for the Preanalytical Conditions for Analyzing Circulating Cell-Free DNA. Clin Chem, 2019.
26. Parackal, S., et al., Comparison of Roche Cell-Free DNA collection Tubes. Pract Lab Med, 2019. 16: p. e00125.
27. Lampignano, R., et al., Multicenter Evaluation of Circulating Cell-Free DNA Extraction and Downstream Analyses for the Development of Standardized (Pre)analytical Work Flows. Clin Chem, 2019.
28. Sorber, L., et al., Specialized Blood Collection Tubes for Liquid Biopsy: Improving the Pre-analytical Conditions. Mol Diagn Ther, 2019.
29. Schmidt, B., et al., Liquid biopsy - Performance of the PAXgene‱ Blood ccfDNA Tubes for the isolation and characterization of cell-free plasma DNA from tumor patients. Clin Chim Acta, 2017. 469: p. 94-98.
30. Denis, M.G., et al., Efficient Detection of BRAF Mutation in Plasma of Patients after Long-term Storage of Blood in Cell-Free DNA Blood Collection Tubes. Clin Chem, 2015. 61(6): p. 886-8.
31. Zhao, Y., et al., Performance comparison of blood collection tubes as liquid biopsy storage system for minimizing cfDNA contamination from genomic DNA. J Clin Lab Anal, 2018: p. e22670.
32. Enko, D., G. Halwachs-Baumann, and G. Kriegshäuser, Plasma free DNA: Evaluation of temperature-associated storage effects observed for Roche Cell-Free DNA collection tubes. Biochem Med (Zagreb), 2019. 29(1): p. 010904.
33. van Dessel, L.F., et al., High-throughput isolation of circulating tumor DNA: a comparison of automated platforms. Mol Oncol, 2018.
34. Fernando, M.R., et al., A novel approach to stabilize fetal cell-free DNA fraction in maternal blood samples for extended period of time. PLoS One, 2018. 13(12): p. e0208508.
35. Hyland, C.A., et al., Non-invasive fetal RHD genotyping for RhD negative women stratified into RHD gene deletion or variant groups: comparative accuracy using two blood collection tube types. Pathology, 2017.
36. Norton, S.E., et al., A stabilizing reagent prevents cell-free DNA contamination by cellular DNA in plasma during blood sample storage and shipping as determined by digital PCR. Clin Biochem, 2013. 46: p. 1561-5.
37. Toro, P.V., et al., Comparison of cell stabilizing blood collection tubes for circulating plasma tumor DNA. Clin Biochem, 2015. 48(15): p. 993-8.
38. Fernando, M.R., et al., A new methodology to preserve the original proportion and integrity of cell-free fetal DNA in maternal plasma during sample processing and storage. Prenat Diagn, 2010. 30(5): p. 418-24.
39. Sherwood, J.L., et al., Optimised Pre-Analytical Methods Improve KRAS Mutation Detection in Circulating Tumour DNA (ctDNA) from Patients with Non-Small Cell Lung Cancer (NSCLC). PLoS One, 2016. 11(2): p. e0150197.
40. Jung, M., et al., Changes in concentration of DNA in serum and plasma during storage of blood samples. Clin Chem, 2003. 49(6 Pt 1): p. 1028-9.
41. Ordoñez, E., et al., Evaluation of sample stability and automated DNA extraction for fetal sex determination using cell-free fetal DNA in maternal plasma. Biomed Res Int, 2013. 2013: p. 195363.
42. Clausen, F.B., et al., Pre-analytical conditions in non-invasive prenatal testing of cell-free fetal RHD. PLoS One, 2013. 8(10): p. e76990.
43. Ammerlaan, W., et al., Method validation for preparing serum and plasma samples from human blood for downstream proteomic, metabolomic, and circulating nucleic acid-based applications. Biopreserv Biobank, 2014. 12(4): p. 269-80.
44. Alborelli, I., et al., Cell-free DNA analysis in healthy individuals by next-generation sequencing: a proof of concept and technical validation study. Cell Death Dis, 2019. 10(7): p. 534.
45. Xue, X., et al., Optimizing the yield and utility of circulating cell-free DNA from plasma and serum. Clin Chim Acta, 2009. 404(2): p. 100-4.
46. Chan, K.C., et al., Effects of preanalytical factors on the molecular size of cell-free DNA in blood. Clin Chem, 2005. 51(4): p. 781-4.
47. Risberg, B., et al., Effects of Collection and Processing Procedures on Plasma Circulating Cell-Free DNA from Cancer Patients. J Mol Diagn, 2018.
48. Angert, R.M., et al., Fetal cell-free plasma DNA concentrations in maternal blood are stable 24 hours after collection: analysis of first- and third-trimester samples. Clin Chem, 2003. 49(1): p. 195-8.
49. Zhang, Y., et al., Effect of formaldehyde treatment on the recovery of cell-free fetal DNA from maternal plasma at different processing times. Clin Chim Acta, 2008. 397(1-2): p. 60-4.
50. Lui, Y.Y., K.W. Chik, and Y.M. Lo, Does centrifugation cause the ex vivo release of DNA from blood cells? Clin Chem, 2002. 48(11): p. 2074-6.
51. Sorber, L., et al., Circulating Cell-Free DNA and RNA Analysis as Liquid Biopsy: Optimal Centrifugation Protocol. Cancers (Basel), 2019. 11(4).
52. Barrett, A.N., et al., Stability of cell-free DNA from maternal plasma isolated following a single centrifugation step. Prenat Diagn, 2014. 34(13): p. 1283-8.
53. Chen, W., et al., Strategies of reducing input sample volume for extracting circulating cell-free nuclear DNA and mitochondrial DNA in plasma. Clin Chem Lab Med, 2012. 50(2): p. 261-5.
54. Jing, R.R., et al., A sensitive method to quantify human cell-free circulating DNA in blood: Relevance to myocardial infarction screening. Clin Biochem, 2011. 44(13): p. 1074-9.
55. Chiu, R.W., et al., Effects of blood-processing protocols on fetal and total DNA quantification in maternal plasma. Clin Chem, 2001. 47(9): p. 1607-13.
56. Swinkels, D.W., et al., Effects of blood-processing protocols on cell-free DNA quantification in plasma. Clin Chem, 2003. 49(3): p. 525-6.
57. Cavallone, L., et al., A Study of Pre-Analytical Variables and Optimization of Extraction Method for Circulating Tumor DNA Measurements by Digital Droplet PCR. Cancer Epidemiol Biomarkers Prev, 2019.
58. Rikkert, L.G., et al., Centrifugation affects the purity of liquid biopsy-based tumor biomarkers. Cytometry A, 2018. 93(12): p. 1207-1212.
59. Lui, Y.Y., et al., Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin Chem, 2002. 48(3): p. 421-7.
60. Raymond, C.K., et al., Collection of cell-free DNA for genomic analysis of solid tumors in a clinical laboratory setting. PLoS One, 2017. 12(4): p. e0176241.
61. Haselmann, V., et al., Results of the first external quality assessment scheme (EQA) for isolation and analysis of circulating tumour DNA (ctDNA). Clin Chem Lab Med, 2018. 56(2): p. 220-228.
62. Sozzi, G., et al., Effects of prolonged storage of whole plasma or isolated plasma DNA on the results of circulating DNA quantification assays. J Natl Cancer Inst, 2005. 97(24): p. 1848-50.
63. Shishido, S.N., et al., Pre-analytical variables for the genomic assessment of the cellular and acellular fractions of the liquid biopsy in a cohort of breast cancer patients. J Mol Diagn, 2020.
64. Frattini, M., et al., Reproducibility of a semiquantitative measurement of circulating DNA in plasma from neoplastic patients. J Clin Oncol, 2005. 23(13): p. 3163-4; author reply 3164-5.
65. Streleckiene, G., et al., Effects of Quantification Methods, Isolation Kits, Plasma Biobanking, and Hemolysis on Cell-Free DNA Analysis in Plasma. Biopreserv Biobank, 2019.
66. Malentacchi, F., et al., Influence of pre-analytical procedures on genomic DNA integrity in blood samples: the SPIDIA experience. Clin Chim Acta, 2015. 440: p. 205-10.
67. He, H.J., et al., Multilaboratory Assessment of a New Reference Material for Quality Assurance of Cell-Free Tumor DNA Measurements. J Mol Diagn, 2019. 21(4): p. 658-676.
68. Page, K., et al., Influence of plasma processing on recovery and analysis of circulating nucleic acids. PLoS One, 2013. 8(10): p. e77963.
69. Repiská, G., et al., Selection of the optimal manual method of cell free fetal DNA isolation from maternal plasma. Clin Chem Lab Med, 2013. 51(6): p. 1185-9.
70. Legler, T.J., et al., Workshop report on the extraction of foetal DNA from maternal plasma. Prenat Diagn, 2007. 27(9): p. 824-9.
71. Clausen, F.B., et al., Improvement in fetal DNA extraction from maternal plasma. Evaluation of the NucliSens Magnetic Extraction system and the QIAamp DSP Virus Kit in comparison with the QIAamp DNA Blood Mini Kit. Prenat Diagn, 2007. 27(1): p. 6-10.
72. Sorber, L., et al., A Comparison of Cell-Free DNA Isolation Kits: Isolation and Quantification of Cell-Free DNA in Plasma. J Mol Diagn, 2017. 19(1): p. 162-168.
73. Diefenbach, R.J., et al., Evaluation of commercial kits for purification of circulating free DNA. Cancer Genet, 2018. 228-229: p. 21-27.
74. Pérez-Barrios, C., et al., Comparison of methods for circulating cell-free DNA isolation using blood from cancer patients: impact on biomarker testing. Transl Lung Cancer Res, 2016. 5(6): p. 665-672.
75. Jain, M., et al., Direct comparison of QIAamp DSP Virus Kit and QIAamp Circulating Nucleic Acid Kit regarding cell-free fetal DNA isolation from maternal peripheral blood. Mol Cell Probes, 2019. 43: p. 13-19.
76. Solassol, J., et al., Comparison of five cell-free DNA isolation methods to detect the EGFR T790M mutation in plasma samples of patients with lung cancer. Clin Chem Lab Med, 2018.
77. Fleischhacker, M., et al., Methods for isolation of cell-free plasma DNA strongly affect DNA yield. Clin Chim Acta, 2011. 412(23-24): p. 2085-8.
78. Devonshire, A.S., et al., Towards standardisation of cell-free DNA measurement in plasma: controls for extraction efficiency, fragment size bias and quantification. Anal Bioanal Chem, 2014. 406(26): p. 6499-512.
79. Mehrotra, M., et al., Study of Preanalytic and Analytic Variables for Clinical Next-Generation Sequencing of Circulating Cell-Free Nucleic Acid. J Mol Diagn, 2017. 19(4): p. 514-24.
80. Ponti, G., et al., The value of fluorimetry (Qubit) and spectrophotometry (NanoDrop) in the quantification of cell-free DNA (cfDNA) in malignant melanoma and prostate cancer patients. Clin Chim Acta, 2018. 479: p. 14-19.
81. Chiminqgi, M., et al., Specific real-time PCR vs. fluorescent dyes for serum free DNA quantification. Clin Chem Lab Med, 2007. 45(8): p. 993-5.
82. Szpechcinski, A., et al., Evaluation of fluorescence-based methods for total vs. amplifiable DNA quantification in plasma of lung cancer patients. J Physiol Pharmacol, 2008. 59 Suppl 6: p. 675-81.
83. Johansson, G., et al., Considerations and quality controls when analyzing cell-free tumor DNA. Biomol Detect Quantif, 2019. 17: p. 100078.
84. Zhang, R., et al., Synthetic Circulating Cell-free DNA as Quality Control Materials for Somatic Mutation Detection in Liquid Biopsy for Cancer. Clin Chem, 2017. 63(9): p. 1465-1475.
85. Elazezy, M. and S.A. Joosse, Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Comput Struct Biotechnol J, 2018. 16: p. 370-378.