1. Wilson SE, Sampaio LP, Shiju TM, Hilgert GSL, de Oliveira RC. Corneal Opacity: Cell Biological Determinants of the Transition From Transparency to Transient Haze to Scarring Fibrosis, and Resolution, After Injury. Investigative Ophthalmology & Visual Science. 2022;63(1):22. doi: 10.1167/iovs.63.1.22.
2. Espana EM, Birk DE. Composition, structure and function of the corneal stroma. Experimental Eye Research. 2020;198:108137.doi: 10.1016/j.exer.2020.108137.
3. Bukowiecki A, Hos D, Cursiefen C, Eming S. Wound-Healing Studies in Cornea and Skin: Parallels, Differences and Opportunities. International Journal of Molecular Sciences. 2017;18(6):1257. doi: 10.3390/ijms18061257.
4. Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Progress in Retinal and Eye Research. 2015;49:17-45. doi: 10.1016/j.preteyeres.2015.07.002.
5. Kempuraj D, Mohan RR. Autophagy in Extracellular Matrix and Wound Healing Modulation in the Cornea. Biomedicines. 2022;10(2):339. doi: 10.3390/biomedicines10020339.
6. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nature Reviews Molecular Cell Biology. 2014;15(12):786-801. doi: 10.1038/nrm3904.
7. Mutoji KN, Sun M, Elliott G, Moreno IY, Hughes C, Gesteira TF, et al. Extracellular Matrix Deposition and Remodeling after Corneal Alkali Burn in Mice. International Journal of Molecular Sciences. 2021;22(11):5708. doi: 10.3390/ijms22115708.
8. Bianchetti L, Barczyk M, Cardoso J, Schmidt M, Bellini A, Mattoli S. Extracellular matrix remodelling properties of human fibrocytes. Journal of Cellular and Molecular Medicine. 2012;16(3):483-495. doi: 10.1111/j.1582-4934.2011.01344.x.
9. García-de-Alba C, Becerril C, Ruiz V, González Y, Reyes S, García-Alvarez J, et al. Expression of Matrix Metalloproteases by Fibrocytes. American Journal of Respiratory and Critical Care Medicine. 2010;182(9):1144-1152. doi: 10.1164/rccm.201001-0028OC.
10. de Oliveira RC, Wilson SE. Fibrocytes, Wound Healing, and Corneal Fibrosis. Investigative Ophthalmology & Visual Science. 2020;61(2):28. doi: 10.1167/iovs.61.2.28.
11. Meng N, Wu J, Chen J, Luo Y, Xu L, Li X. Basement membrane regeneration and TGF-β1 expression in rabbits with corneal perforating injury. Molecular Vision. 2023;29:58-67.
12. Cro S, Partington G, Cornelius VR, Banerjee PJ, Zvobgo TM, Casswell EJ, et al. Presenting clinical characteristics of open globe injuries in ocular trauma: baseline analysis of cases in the ASCOT national clinical trial. Eye. 2022;37(8):1732-1740. doi: 10.1038/s41433-022-02206-z.
13. Goodman WM, Raj NS, Garone M, Arffa RC, Thoft RA. Unique Parameters in the Healing of Linear Partial Thickness Penetrating Corneal Incisions in Rabbit: Immunohistochemical Evaluation. Current Eye Research. 2009;8(3):305-316. doi: 10.3109/02713688908997573.
14. Wilson SE. Fibrosis Is a Basement Membrane-Related Disease in the Cornea: Injury and Defective Regeneration of Basement Membranes May Underlie Fibrosis in Other Organs. Cells. 2022;11(2):309. doi: 10.3390/cells11020309.
15. Marino GK, Santhiago MR, Santhanam A, Torricelli AAM, Wilson SE. Regeneration of Defective Epithelial Basement Membrane and Restoration of Corneal Transparency After Photorefractive Keratectomy. Journal of Refractive Surgery. 2017;33(5):337-346. doi: 10.3928/1081597X-20170126-02.
16. Torricelli AAM, Singh V, Santhiago MR, Wilson SE. The Corneal Epithelial Basement Membrane: Structure, Function, and Disease. Investigative Ophthalmology & Visual Science. 2013;54(9):6250-6256. doi: 10.1167/iovs.13-12547.
17. Torricelli AAM, Singh V, Agrawal V, Santhiago MR, Wilson SE. Transmission Electron Microscopy Analysis of Epithelial Basement Membrane Repair in Rabbit Corneas With Haze. Investigative Ophthalmology & Visual Science. 2013;54(6):4026-4033. doi: 10.1167/iovs.13-12106.
18. Torricelli AAM, Santhanam A, Wu J, Singh V, Wilson SE. The corneal fibrosis response to epithelial–stromal injury. Experimental Eye Research. 2016;142:110-118. doi: 10.1016/j.exer.2014.09.012.
19. Wilson SE, Marino GK, Torricelli AAM, Medeiros CS. Injury and defective regeneration of the epithelial basement membrane in corneal fibrosis: A paradigm for fibrosis in other organs? Matrix Biology. 2017;64:17-26. doi: 10.1016/j.matbio.2017.06.003.
20. Sampaio LP, Shiju TM, Hilgert GSL, de Oliveira RC, DeDreu J, Menko AS, et al. Descemet's membrane injury and regeneration, and posterior corneal fibrosis, in rabbits. Experimental Eye Research. 2021;213:108803. doi: 10.1016/j.exer.2021.108803.
21. Medeiros CS, Saikia P, de Oliveira RC, Lassance L, Santhiago MR, Wilson SE. Descemet's Membrane Modulation of Posterior Corneal Fibrosis. Investigative Ophthalmology & Visual Science. 2019;60(9):3308-3316. doi: 10.1167/iovs.18-26451.
22. Wilson SE. The corneal fibroblast: The Dr. Jekyll underappreciated overseer of the responses to stromal injury. The Ocular Surface. 2023;29:53-62. doi: 10.1016/j.jtos.2023.04.012.
23. Saikia P, Medeiros CS, Thangavadivel S, Wilson SE. Basement membranes in the cornea and other organs that commonly develop fibrosis. Cell and Tissue Research. 2018;374(3):439-453. doi: 10.1007/s00441-018-2934-7.
24. de Oliveira RC, Tye G, Sampaio LP, Shiju TM, DeDreu J, Menko AS, et al. TGFβ1 and TGFβ2 proteins in corneas with and without stromal fibrosis: Delayed regeneration of apical epithelial growth factor barrier and the epithelial basement membrane in corneas with stromal fibrosis. Experimental Eye Research. 2021;202:108325. doi: 10.1016/j.exer.2020.108325.
25. Connon CJ, Meek KM. Organization of corneal collagen fibrils during the healing of trephined wounds in rabbits. Wound Repair and Regeneration. 2003;11(1):71-78. doi: 10.1046/j.1524-475X.2003.11110.x.
26. Fantes FE, Hanna KD, Waring GO III, Pouliquen Y, Thompson KP, Savoldelli M. Wound healing after excimer laser keratomileusis (photorefractive keratectomy) in monkeys. Archives of Ophthalmology. 1990;108(5):665-675. doi: 10.1001/archopht.1990.01070070051034.
27. Connon CJ, Tandon A, Sharma A, Rodier JT, Klibanov AM, Rieger FG, et al. BMP7 Gene Transfer via Gold Nanoparticles into Stroma Inhibits Corneal Fibrosis In Vivo. PLoS ONE. 2013;8(6):e66434. doi: 10.1371/journal.pone.0066434.
28. Miosge N. The ultrastructural composition of basement membranes in vivo. Histology and Histopathology. 2001;16(4):1239-1248. doi: 10.14670/HH-16.1239.
29. Santhanam A, Marino GK, Torricelli AAM, Wilson SE. EBM regeneration and changes in EBM component mRNA expression in stromal cells after corneal injury. Molecular Vision. 2017;23:39-51. PMID: 28210236.
30. Liu R, Li J, Guo Z, Chu D, Li C, Shi L, et al. Celastrol Alleviates Corneal Stromal Fibrosis by Inhibiting TGF-β1/Smad2/3-YAP/TAZ Signaling After Descemet Stripping Endothelial Keratoplasty. Investigative Ophthalmology & Visual Science. 2023;64(3):9. doi: 10.1167/iovs.64.3.9.
31. Tang Y, Du E, Wang G, Qin F, Meng Z, Dai L, et al. A negative feedback loop centered on SMAD3 expression in transforming growth factor β1-induced corneal myofibroblast differentiation. Experimental Eye Research. 2023;236:109654. doi: 10.1016/j.exer.2023.109654.
32. Yam GHF, Riau AK, Funderburgh ML, Mehta JS, Jhanji V. Keratocyte biology. Experimental Eye Research. 2020;196:108062. doi: 10.1016/j.exer.2020.108062.
33. Wilson SE. Corneal myofibroblast biology and pathobiology: Generation, persistence, and transparency. Experimental Eye Research. 2012;99:78-88. doi: 10.1016/j.exer.2012.03.018.
34. Hassell JR, Birk DE. The molecular basis of corneal transparency. Experimental Eye Research. 2010;91(3):326-335. doi: 10.1016/j.exer.2010.06.021.
35. Ishizaki M, Shimoda M, Wakamatsu K, Ogro T, Yamanaka N, Kao CWC, et al. Stromal fibroblasts are associated with collagen IV in scar tissues of alkali-burned and lacerated corneas. Current Eye Research. 2009;16(4):339-348. doi: 10.1076/ceyr.16.4.339.10684.
36. Marino GK, Santhiago MR, Santhanam A, Lassance L, Thangavadivel S, Medeiros CS, et al. Epithelial basement membrane injury and regeneration modulates corneal fibrosis after pseudomonas corneal ulcers in rabbits. Experimental Eye Research. 2017;161:101-105.doi: 10.1016/j.exer.2017.05.003.
37. Medeiros CS, Lassance L, Saikia P, Santhiago MR, Wilson SE. Posterior stromal cell apoptosis triggered by mechanical endothelial injury and basement membrane component nidogen-1 production in the cornea. Experimental Eye Research. 2018;172:30-35. doi: 10.1016/j.exer.2018.03.025.
38. Sampaio LP, Hilgert GSL, Shiju TM, Santhiago MR, Wilson SE. Topical Losartan and Corticosteroid Additively Inhibit Corneal Stromal Myofibroblast Generation and Scarring Fibrosis After Alkali Burn Injury. Translational Vision Science & Technology. 2022;11(7):9. doi: 10.1167/tvst.11.7.9.
39. Gallego-Muñoz P, Lorenzo-Martín E, Fernández I, Herrero-Pérez C, Martínez-García MC. Nidogen-2: Location and expression during corneal wound healing. Experimental Eye Research. 2019;178:1-9. doi: 10.1016/j.exer.2018.09.004.
40. Santhanam A, Torricelli AAM, Wu J, Marino GK, Wilson SE. Differential expression of epithelial basement membrane components nidogens and perlecan in corneal stromal cells in vitro. Molecular Vision. 2015;21:1318-1327. PMID: 26692758.
41. Netto MV, Mohan RR, Sinha S, Sharma A, Dupps W, Wilson SE. Stromal haze, myofibroblasts, and surface irregularity after PRK. Experimental Eye Research. 2006;82(5):788-797. doi:10.1016/j.exer.2005.09.021.
42. Wilson SE. Corneal wound healing. Experimental Eye Research. 2020;197:108089. doi:10.1016/j.exer.2020.108089.
43. de Oliveira RC, Wilson SE. Descemet's membrane development, structure, function and regeneration. Experimental Eye Research. 2020;197:108090. doi:10.1016/j.exer.2020.108090.
44. Lassance L, Marino GK, Medeiros CS, Thangavadivel S, Wilson SE. Fibrocyte migration, differentiation and apoptosis during the corneal wound healing response to injury. Experimental Eye Research. 2018;170:177-187. doi:10.1016/j.exer.2018.02.018.
45. Galligan CL, Fish EN. The role of circulating fibrocytes in inflammation and autoimmunity. Journal of Leukocyte Biology. 2013;93(1):45-50. doi:10.1189/jlb.0712365.
46. Gallego-Muñoz P, Ibares-Frías L, Valsero-Blanco MC, et al. Effects of TGFβ1, PDGF-BB, and bFGF on human corneal fibroblasts proliferation and differentiation during stromal repair. Cytokine. 2017;96:94-101. doi:10.1016/j.cyto.2017.03.011.
47. Wilson SE. Corneal myofibroblasts and fibrosis. Experimental Eye Research. 2020;201:108272. doi:10.1016/j.exer.2020.108272.
48. Barbosa FL, Chaurasia SS, Cutler A, et al. Corneal myofibroblast generation from bone marrow-derived cells. Experimental Eye Research. 2010;91(1):92-96. doi:10.1016/j.exer.2010.04.007.
49. Medeiros CS, Marino GK, Santhiago MR, Wilson SE. The Corneal Basement Membranes and Stromal Fibrosis. Investigative Ophthalmology & Visual Science. 2018;59(8):4044-4053. doi:10.1167/iovs.18-24428.
50. de Oliveira RC, Sampaio LP, Shiju TM, Santhiago MR, Wilson SE. Epithelial Basement Membrane Regeneration After PRK-Induced Epithelial-Stromal Injury in Rabbits: Fibrotic Versus Non-fibrotic Corneal Healing. Journal of Refractive Surgery. 2022;38(1):50-60. doi:10.3928/1081597X-20211007-02.
51. Göhring W, Sasaki T, Heldin C-H, Timpl R. Mapping of the binding of platelet-derived growth factor to distinct domains of the basement membrane proteins BM-40 and perlecan and distinction from the BM-40 collagen-binding epitope. European Journal of Biochemistry. 1998;255(1):60-66. doi:10.1046/j.1432-1327.1998.2550060.x.
52. Wilson SE. The Cornea: No Difference in the Wound Healing Response to Injury Related to Whether, or Not, There’s a Bowman’s Layer. Biomolecules. 2023;13(5):771. doi:10.3390/biom13050771.
53. Lipshitz I, Loewenstein A, Varssano D, Lazar M. Late Onset Corneal Haze after Photorefractive Keratectomy for Moderate and High Myopia. Ophthalmology. 1997;104(3):369-374. doi:10.1016/S0161-6420(97)30306-6.
Mohan RR, Hutcheon AEK, Choi R, et al. Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK. Experimental Eye Research. 2003;76(1):71-87. doi:10.1016/S0014-4835(02)00278