Nov 02, 2023

Public workspaceIntrinsic water use efficiency estimate: an isotopic method

  • Flavie Gerle1,
  • Pauline Malherbe2,
  • Christelle Boisselet1,
  • David Lafleuriel1,
  • Julien Godfroy2,3,
  • Pierre Lochin2,
  • Baptiste Marteau2,
  • Hervé Piegay2,
  • Sara Puijalon1,
  • Antoine Vernay1
  • 1Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France;
  • 2UMR 5600 EVS, ENS de Lyon, F-69342 Lyon, France;
  • 3National Research Institute of Science and Technology for Environment and Agriculture, Research Unit Mountain Ecosystems, University Grenoble Alpes, 2 rue de la Papeterie, F-38402 St-Martin-d’Hères
Open access
Protocol CitationFlavie Gerle, Pauline Malherbe, Christelle Boisselet, David Lafleuriel, Julien Godfroy, Pierre Lochin, Baptiste Marteau, Hervé Piegay, Sara Puijalon, Antoine Vernay 2023. Intrinsic water use efficiency estimate: an isotopic method . protocols.io https://dx.doi.org/10.17504/protocols.io.dm6gp3xk8vzp/v1
Manuscript citation:

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License,  which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Protocol status: Working
We use this protocol and it's working
Created: November 02, 2023
Last Modified: November 02, 2023
Protocol Integer ID: 90313
Keywords: phloem, d13C, intrinsic water use efficiency, tree
Funders Acknowledgement:
OHM Vallée du Rhone
Grant ID: ANR-11-LABX-0010
FR BioEEnViS
Abstract
Protocol summary and key steps This protocol describes in detail how to calculate the intrinsic water use efficiency (WUEi) from 13C measurements in phloem samples collected at breast height in trees. Basically, the isotopic signature of photosynthetized carbohydrates (13C/12C) in the phloem sap inform on the assimilation condition: a higher (13C/12C) is associated with a lower transpiration rate, increasing heavy isotope (13C) use by the plant (Dawson et al. 2002). A higher 13C/12C in the phloem content reflect a higher proportion of assimilated C compared to transpiration rate, in other words, a higher WUEi. The method described here is based on the isotopic discrimination of δ13C in trees and considers ecophysiological processes of stomatal and mesophyll conductance (gs and gm, respectively). The protocol aims to provide the operator with a step-by-step method from the collection of phloem samples in the field to the final calculation. The protocol is already described in the scientific literature (Klein et al. 2016; Seibt et al. 2008; Vernay et al. 2020) but this document addresses more practical and technical details that a practitioner might expect. WUE (water use efficiency) corresponds to plant productivity or the productivity of an organ of the plant regarding the amount of water used to produce this fresh matter (Théroux Rancourt 2014). At an individual scale, WUE considers a ratio of the biomass produced compared to the amount of water used to produce this biomass. At the leaf level, WUEi (intrinsic WUE) determines the ratio of CO2 assimilation per amount of water transpired and can take into account the micro-environment of the leaf, by considering gs/gm to be more precise (Vialet-Chabrand 2013).
Attachments
Image Attribution
Antoine VERNAY
Protocol references
Adams, Mark A, Thomas N Buckley, et Tarryn L Turnbull. 2020. « Diminishing CO2-driven gains in water-use efficiency of global forests ». Nature Climate Change 10(5): 466‑71.
de Almeida Lobo, Francisco et al. 2023. « Is Intrinsic Water Use Efficiency Independent of Leaf-to-Air Vapor Pressure Deficit? » Theoretical and Experimental Plant Physiology 35(2): 65‑80. https://doi.org/10.1007/s40626-023-00269-1.
Busch, Florian A., Meisha Holloway-Phillips, Hilary Stuart-Williams, et Graham D. Farquhar. 2020. « Revisiting Carbon Isotope Discrimination in C 3 Plants Shows Respiration Rules When Photosynthesis Is Low ». Nature Plants 6(3): 245‑58.

Cernusak, Lucas. 2018. « Gas exchange and water-use efficiency in plant canopies ». Plant Biology 22 Suppl 1.

Dawson, Todd E. et al. 2002. « Stable Isotopes in Plant Ecology ». Annual Review of Ecology and Systematics 33(1): 507‑59.

Farquhar, G D, J R Ehleringer, et K T Hubick. 1989. « Carbon Isotope Discrimination and Photosynthesis ». Annual Review of Plant Physiology and Plant Molecular Biology 40(1): 503‑37. https://www.annualreviews.org/doi/10.1146/annurev.pp.40.060189.002443.

Gessler, A., H. Rennenberg, et C. Keitel. 2004. « Stable Isotope Composition of Organic Compounds Transported in the Phloem of European Beech--Evaluation of Different Methods of Phloem Sap Collection and Assessment of Gradients in Carbon Isotope Composition during Leaf-to-Stem Transport ». Plant Biology (Stuttgart, Germany) 6(6): 721‑29.
Klein, Tamir, Eyal Rotenberg, Fyodor Tatarinov, et Dan Yakir. 2016. « Association between Sap Flow‐derived and Eddy Covariance‐derived Measurements of Forest Canopy CO 2 Uptake ». New Phytologist 209(1): 436‑46. https://onlinelibrary.wiley.com/doi/10.1111/nph.13597.
Portier, Jeanne et al. 2023. « No Evidence That Coring Affects Tree Growth or Mortality in Three Common European Temperate Forest Tree Species ». European Journal of Forest Research. https://doi.org/10.1007/s10342-023-01612-6 (17 octobre 2023).
Seibt, Ulli, Abazar Rajabi, Howard Griffiths, et Joseph A. Berry. 2008. « Carbon Isotopes and Water Use Efficiency: Sense and Sensitivity ». Oecologia 155(3): 441‑54. http://link.springer.com/10.1007/s00442-007-0932-7 (2 mai 2023).

Stangl, Zsofia R. et al. 2019. « Diurnal Variation in Mesophyll Conductance and Its Influence on Modelled Water-Use Efficiency in a Mature Boreal Pinus Sylvestris Stand ». Photosynthesis Research 141(1): 53‑63. http://link.springer.com/10.1007/s11120-019-00645-6.

Stangl, Zsofia R., Lasse Tarvainen, Göran Wallin, et John D. Marshall. 2022. « Limits to Photosynthesis: Seasonal Shifts in Supply and Demand for CO2 in Scots Pine ». The New Phytologist 233(3): 1108‑20.

Tcherkez, Guillaume et al. 2017. « Leaf Day Respiration: Low CO2 Flux but High Significance for Metabolism and Carbon Balance ». New Phytologist 216(4): 986‑1001.

Théroux Rancourt, Guillaume. 2014. « Relations entre la conductance du mésophylle au CO₂ et l’hydraulique des tiges et des feuilles chez des clones de peupliers hybrides variant en sensibilité à la sécheresse ». phdthesis. Université Laval. http://hdl.handle.net/20.500.11794/25571.
Théroux-Rancourt, Guillaume, Gilbert Éthier, et Steeve Pepin. 2014. « Threshold Response of Mesophyll CO 2 Conductance to Leaf Hydraulics in Highly Transpiring Hybrid Poplar Clones Exposed to Soil Drying ». Journal of Experimental Botany 65(2): 741‑53. https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ert436.

Vernay, Antoine et al. 2020. « Estimating Canopy Gross Primary Production by Combining Phloem Stable Isotopes with Canopy and Mesophyll Conductances ». Plant, Cell & Environment 43(9): 2124‑42. https://onlinelibrary.wiley.com/doi/10.1111/pce.13835.
Vialet-Chabrand, Silvère. 2013. « Modélisation des variations journalières de la conductance stomatique : apport d’une approche dynamique et conséquences sur l’efficience intrinsèque d’utilisation de l’eau chez le chêne ». phdthesis. Université de Lorraine. https://hal.univ-lorraine.fr/tel-01750135.

Xiong, Dongliang, Cyril Douthe, et Jaume Flexas. 2018. « Differential Coordination of Stomatal Conductance, Mesophyll Conductance, and Leaf Hydraulic Conductance in Response to Changing Light across Species ». Plant, Cell & Environment 41(2): 436‑50.

Zhang, Zhiqiang et al. 2023. « Forest Water-Use Efficiency: Effects of Climate Change and Management on the Coupling of Carbon and Water Processes ». Forest Ecology and Management 534: 120853. https://www.sciencedirect.com/science/article/pii/S0378112723000865.