Jun 26, 2022

Public workspaceIdentification of PKC-regulated phosphosites on LRRK1 by mass spectrometry analysis

  • 1Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
Icon indicating open access to content
QR code linking to this content
Protocol CitationAsad Malik, Raja Sekhar Nirujogi, Toan K. Phung, Dario R. Alessi 2022. Identification of PKC-regulated phosphosites on LRRK1 by mass spectrometry analysis. protocols.io https://dx.doi.org/10.17504/protocols.io.261gen89dg47/v1
Manuscript citation:
Malik AU, Karapetsas A, Nirujogi RS, Chatterjee D, Phung TK, Wightman M, Gourlay R, Morrice N, Mathea S, Knapp S, Alessi DR, PKC isoforms activate LRRK1 kinase by phosphorylating conserved residues (Ser1064, Ser1074 and Thr1075) within the COR GTPase domain. Biochemical Journal 479(18). doi: 10.1042/BCJ20220308
License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License,  which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Protocol status: Working
We use this protocol and it’s working
Created: June 09, 2022
Last Modified: May 31, 2024
Protocol Integer ID: 64254
Keywords: PKC-regulated phosphosites, LRRK1, Mass spectrometry analysis, ASAPCRN
Abstract
We describe a non-radioactive, mass spectrometry-based assay that we deploy for identifying novel PKC-regulated sites on LRRK1 that are responsible for activation of its kinase activity.

Attachments
Materials
MATERIALS

Reagents:

Note
Recombinant LRRK1 protein is expressed and purified by following the protocol described in: XXXXX

Kinase assay buffer:
AB
HEPES pH 7.525 mM
2-mercaptoethanol0.1% (v/v)
KCl50 mM
CaCl21 mM
MgCl210 mM
ATP1 mM

  • L-α-Phosphatidylserine (Avanti Polar Lipids, resuspended in methanol and chloroform at a 1:1 ratio for long-term storage)
  • L-α-Diacylglyerol (Avanti Polar Lipids, resuspended in methanol and chloroform at a 1:1 ratio for long-term storage)

4X Loading buffer: ReagentNUPAGE LDS sample buffer (4x)Thermo Fisher ScientificCatalog #NP0007 or 4X SDS loading buffer:
AB
Tris-HCl pH6.8250mM
SDS8% (w/v)
Glycerol40% (v/v)
Bromophenol blue0.02% (w/v)

SDS-PAGE buffer:

  • For NuPAGETM Bis-Tris gels:ReagentNuPAGE™ MOPS SDS Running Buffer (20X)Thermo FisherCatalog #NP000102 )
  • For self-cast Bis-Tris gels:
AB
MOPS50 mM
Tris50 mM
SDS0.1% (w/v)
EDTA1 mM

  • ReagentInstantBlue® Coomassie Protein Stain (ISB1L) (ab119211)AbcamCatalog #119211 , or equivalent
  • ReagentDL-Dithiothreitol (DTT)Sigma AldrichCatalog #43815
  • ReagentAmmonium bicarbonateSigma AldrichCatalog #A6141
  • ReagentAcetonitrile ≥99.9%VWR AvantorCatalog #1.00030.2500
  • ReagentIodoacetamideMillipore SigmaCatalog #I1149
  • ReagentTrifluoroacetic acid for HPLC > 99.0%Sigma-aldrichCatalog #302031-100ML
Note
Prepare a 20% (by vol) aqueous trifluroacetic acid (TFA) stock and store at Temperature4 °C .



  • ReagentSeq Grade Modified Trypsin, 100ug (5 x 20ug)PromegaCatalog #V5111 ).
  • ReagentChymotrypsin, Sequencing Grade, 25ugPromegaCatalog #V1061 )
  • ReagentAsp-N, Sequencing Grade, 2ugPromegaCatalog #V1621
Note
Store protease stocks at Temperature-20 °C and thaw TemperatureOn ice ? just before the digestion step.

ReagentNuPAGE 4–12% Bis–Tris Midi GelThermo Fisher ScientificCatalog #WG1403BOX
ReagentNuPAGE™ 4 to 12% Bis-Tris 1.0 mm Midi Protein GelsThermo Fisher ScientificCatalog #WG1402BOX
ReagentReproSil-Pur C18 1.9 µm beadsCatalog #EV1113..
Equipment:
, or equivalent
Equipment
Savant SpeedVac system
NAME
Vacuum concentrator
TYPE
Thermo Fisher Scientific
BRAND
SPD140DDA
SKU
LINK
, or equivalent

  • Thermo mixer (Eppendorf ThermoMixer, or equivalent)
  • Disposable Glass Culture Tubes (Fisherbrand Round Bottom Disposable Borosilicate Glass Tubes, or equivalent)
  • XCell4 SureLock Midi-Cell Electrophoresis System (if using Invitrogen NuPAGE precast midi gels), or equivalent gel electrophoresis apparatus.
Equipment
See-saw rocker
NAME
Rocker
TYPE
VWR
BRAND
SSL4
SKU
LINK
, or equivalent
Equipment
Eppendorf® LoBind microcentrifuge tubes
NAME
Microcentrifuge tubes
TYPE
Eppendorf
BRAND
022431081
SKU
LINK

Equipment
16-gauge needle
NAME
Needle
TYPE
Sigma Aldrich
BRAND
Z261378
SKU
LINK

Equipment
Spray duster
NAME
Pressurised, HFC free air duster perfect for keyboards, cameras and difficult to reach areas. Ozone Friendly
TYPE
Qconnect
BRAND
KFO4499
SKU
LINK

  • PTFE-O rings
Note
Place the PTFE-O-ring on top of the Eppendorf tube to serve as an adaptor such a way that 3/4th of the Stage-tip could be placed into the tube during the centrifugation step. PTFE-O-rings can be purchased from NEST group desalting columns and re use them https://www.nestgrp.com/.

  • X72 40 mL Amber class EPA vial W Cap and seal (Cole Parmer # 10572553)
Equipment
CDS Analytical 2215 Empore™ C-18 Disk, 47mm; 60/PK
NAME
Empore organic SPE disks are ideal for solid phase extraction of large water samples.
TYPE
Cole Parmer
BRAND
2215
SKU
LINK
Note
Prepare a single layer with 16-gauge needle and pass it with spray duster into the Amount250 µL tip for 0.1 to Amount5 µg of peptide amount. For more than Amount5 µg , punch 2 or 3 layers with 16-guage needle.

  • Exploris 240 Mass spectrometer.
  • EvoSep Liquid chromatrography system.
Note
Any nano-LC such as Easy nLC or Ultimate 3000 Dionex can be used instead.

  • Proteome Discoverer 2.4 software suite with SEQUEST or Mascot search algorithm.












Preparation of lipid vesicles for PKC activation
Preparation of lipid vesicles for PKC activation
Clean a disposable glass culture tube by washing three times with 100% methanol. Allow to air-dry.
Wash
Pipette Amount0.5 µL of Diacylglycerol (stock concentration is Concentration10 mg/mL ) and Amount5 µL of Phosphatidylserine (stock concentration is Concentration10 mg/mL ) into the cleaned and dried glass tube.
Note
These quantities will provide sufficient lipid vesicles for 25 reactions at a volume of Amount20 µL per reaction.


Pipetting
Vacuum dry lipids using a SpeedVac system for Duration00:10:00 . This should leave a visible, translucent lipid pellet.
Note
Ensure that lipids are completely dried as any residual chloroform or methanol will inhibit the kinase reaction.


10m
Resuspend lipids from step 3 in Amount50 µL of Concentration25 millimolar (mM) HEPES Ph7.4 , Concentration50 millimolar (mM) KCl. Vortex gently until pellet is no longer visible.

Pipetting
Mix
Kinase Reaction: Phosphorylation of LRRK1 by PKC
Kinase Reaction: Phosphorylation of LRRK1 by PKC
Prepare a primary “2X master mix” containing Concentration50 millimolar (mM) HEPES Ph7.5 , Concentration100 millimolar (mM) KCl, 0.2% (v/v) 2‐Mercaptoethanol, Concentration20 millimolar (mM) MgCl2, Concentration2 millimolar (mM) ATP, Concentration2 millimolar (mM) CaCl2, Concentration200 μg/ml Phosphatidylserine and Concentration20 μg/ml Diacylglycerol.
For each reaction, add Amount15 µL of the primary “2X master mix” to a clean Eppendorf tube.
Pipetting
Add Amount7.5 µL of Concentration200 nanomolar (nM) LRRK1 wild type protein (final concentration is Concentration50 nanomolar (nM) ) to each reaction and allow equilibration TemperatureOn ice for Duration00:05:00 .

5m
Pipetting
Start the kinase reaction by adding Amount7.5 µL of Concentration400 nanomolar (nM) PKC Alpha protein (final concentration is Concentration100 nanomolar (nM) ).
Note
The final reaction volume should be Amount30 µL .


Note
Reactions not including PKC Alpha are also included as a negative control to identify phosphorylation sites that are only present when recombinant LRRK1 protein is incubated with PKC Alpha. In these reactions, add Amount7.5 µL of Concentration25 millimolar (mM) HEPES Ph7.4 , Concentration50 millimolar (mM) KCl instead of PKC Alpha protein.

Incubation
Pipetting
Transfer the Eppendorf tubes to the thermo mixer set at Temperature30 °C , Centrifigation1000 rpm . Incubate for Duration00:45:00 .




45m
Incubation
Centrifigation
Mix
Stop the kinase reaction by adding Amount10 µL of 4X LDS loading buffer to the reaction mix to a final concentration of 1X.


Pipetting
Incubate the samples for Duration00:05:00 at Temperature70 °C on a heat block before proceeding to SDS-polyacrylamide gel electrophoresis (SDS-PAGE) section.

5m
Incubation
SDS-polyacrylamide gel electrophoresis (SDS-PAGE):
SDS-polyacrylamide gel electrophoresis (SDS-PAGE):
Load samples onto a NuPAGE 4–12% Bis–Tris Midi Gel (ThermoFisherScientific, Cat#WG1402BOX or Cat#WG1403BOX), alongside pre-stained molecular weight markers (ranging from 10 kDa to 250 kDa). Rinse wells carefully with running buffer before loading samples.
Note
Load the complete reaction onto gels to ensure detection of proteins by Instant Blue stain.

Pipetting
Wash
Electrophorese samples at 130V with MOPS SDS running buffer for Duration02:00:00 or until the blue dye runs off the gel.

2h
Place gel in a clean glass 15 cm dish and cover with Amount15 mL -Amount20 mL of InstantBlue® Coomassie Protein stain. Incubate on see-saw rocker for Duration01:00:00 at TemperatureRoom temperature .

1h
Incubation
Pipetting
Replace the InstantBlue® Protein stain with double distilled water and allow to de-stain at TemperatureRoom temperature DurationOvernight before proceeding with peptide digestion as described in Total Protein Digestion section.



2m
Overnight
Total Protein Digestion
Total Protein Digestion
Using a clean scalpel, excise stained-bands corresponding to LRRK1 from gel and cut into approximately 1mm2 gel pieces.
Transfer the gel pieces into a low-bind tube.
De-stain gel pieces by repeated Duration00:10:00 washes in 40% (v/v) ACN in Concentration40 millimolar (mM) NH4HCO3.
Note
Wash by incubation on thermomixer set to Centrifigation1200 rpm at TemperatureRoom temperature . Repeat step 18 until gel pieces are completely colorless.




10m
Incubation
Centrifigation
Wash
Reduce peptides by addition of Amount100 µL of Concentration5 millimolar (mM) DTT in Concentration40 millimolar (mM) NH4HCO3. Incubate on thermomixer at Temperature56 °C for Duration00:30:00 , Centrifigation1200 rpm .

30m
Incubation
Pipetting
Mix
Remove the DTT solution and incubate gel pieces in 40% (v/v) ACN in Concentration40 millimolar (mM) NH4HCO3 for Duration00:10:00 at TemperatureRoom temperature ?
Note
This step allows the gel pieces to subsequently imbibe iodoacetamide (Step 21).

10m
Incubation
Alkylate peptides by addition of Concentration20 millimolar (mM) iodoacetamide in Concentration40 millimolar (mM) NH4HCO3 and incubate at TemperatureRoom temperature for Duration00:30:00 , Centrifigation1200 rpm .
Note
Samples should be kept in the dark during this step as iodoacetamide is light-sensitive.

30m
Incubation
Centrifigation
Pipetting
Dehydrate gel pieces by washing in 100% (v/v) ACN for Duration00:10:00 .
Note
Perform this step on thermomixer set to Centrifigation1200 rpm at TemperatureRoom temperature . Repeat step 22 twice until the gel pieces appear completely dry and white.


10m
Centrifigation
Wash
Mix
Remove supernatant using a pipette and vacuum dry gel pieces to remove any residual CAN.
Pipetting
Add Amount100 ng of protease in Amount100 µL of appropriate buffer (See Table 1) to the gel pieces from step 23 and incubate DurationOvernight on thermomixer at Temperature37 °C , Centrifigation1200 rpm .
Note
Table 1 describes the different protease combinations used for total protein digestion and the appropriate buffers for each protease.


AB
ProteaseBuffer
Trypsin + LysC50 mM TEABC
Asp-N50 mM Tris-HCl
Chymotrypsin100 mM Tris-HCl + 10 mM CaCl2
Table 1: Protease combinations used for total protein digestion and appropriate buffers for each protease.


10m
Incubation
Centrifigation
Overnight
Peptide extraction
Peptide extraction
Supplement samples from step 24 with Amount50 µL of extraction buffer (80% ACN in 0.2% Formic Acid) and incubate on thermomixer at TemperatureRoom temperature for Duration00:10:00 at Centrifigation1200 rpm .
10m
Incubation
Centrifigation
Pipetting
Centrifuge samples for Duration00:01:00 at Centrifigation2000 x g to pellet the gel pieces and using a pipette carefully transfer the supernatant to a new low-binding? tube.
Note
Ensure that the gel pieces are not transferred to the new tube when pipetting the supernatant.

1m
Centrifigation
Pipetting
Repeat step 25 until the gel pieces appear completely dried. Each time, transfer the supernatant into the same tube (from step 26).
Vacuum dry the combined supernatants (containing the digested peptides) and proceed with C18 clean-up protocol (as described in C18 stage-tip protocol section).
C18 stage-tip protocol:
C18 stage-tip protocol:
Note
This protocol has been adapted from dx.doi.org/10.17504/protocols.io.bs3tngnn

Prepare single layer of C18 stage-tip using 16-gauge syringe needle[FT(1].
Note
Prepare a single layer with 16-gauge needle and pass it with spray duster into the Amount250 µL tip for Amount0.1 µg to Amount5 µg of peptide amount.

Pipetting
Resuspend the vacuum dried peptides from step 28 in Amount80 µL of Solvent A1 (0.1% (by vol) TFA in MQ-H2O).
Pipetting
Add Amount80 µL of 100% (by vol) ACN to the C18 stage-tip from Step 29 and centrifuge at Centrifigation2000 x g for Duration00:02:00 at TemperatureRoom temperature . Discard flow through.
Note
This step is required to activate the C18 resin.

2m
Centrifigation
Pipetting
Add Amount80 µL Solvent A1 (0.1% (by vol) TFA (by vol) in MQ-H2O)) and centrifuge at Centrifigation2000 x g for Duration00:02:00 at TemperatureRoom temperature . Discard flow through. Repeat this step.
Note
This step is required to equilibrate the C18 resin.

2m
Centrifigation
Pipetting
Load the acidified peptide digest from Step 30 to the C18 stage-tip from step 32 and centrifuge at Centrifigation1500 x g for Duration00:05:00 at TemperatureRoom temperature .
Note
During this step the peptides will absorb to the C18 resin.

5m
Centrifigation
Pipetting
Reapply the flow through to the C18 stage-tip column and centrifuge at Centrifigation1500 x g for Duration00:05:00 at TemperatureRoom temperature .

5m
Centrifigation
Add Amount80 µL of Solvent A1 (0.1% (by vol) TFA v/v) in MQ-H2O)?) to the C18 stage-tip column and centrifuge at Centrifigation2000 x g for Duration00:02:00 at TemperatureRoom temperature . Discard flow through. Repeat again.

2m
Centrifigation
Pipetting
Place the C18 stage-tip from step 35 into a new 1.5 ml low binding tube.
Note
Using new tubes is important to avoid contamination.

Elute peptides from the C18 stage-tip by adding Amount40 µL of Elution buffer (Solvent B1: 40% (by vol) acetonitrile in 0.1% (by vol) TFA) in MQ-H2O and centrifuge at Centrifigation1500 x g for Duration00:02:00 .

2m
Centrifigation
Pipetting
Repeat step 37.
Elute peptides from the C18 stage-tip by adding Amount40 µL of Elution buffer (Solvent B1: 40% (by vol) acetonitrile in 0.1% (by vol) TFA) in MQ-H2O and centrifuge at Centrifigation1500 x g for Duration00:02:00 .
2m
Centrifigation
Pipetting
Immediately snap freeze the eluted peptides from step 38 on dry ice and vacuum dry.
Perform mass spectrometry analysis of the peptides as described in LC-MS/MS analysis section.
LC-MS/MS analysis
LC-MS/MS analysis
Dissolve the peptides in LC-Buffer (3% ACN (v/v) in 0.1% Formic acid (v/v)).
Note
Just Amount200 ng of peptide digest per sample is good enough to achieve the coverage on Exploris 240 mass spectrometer. If the starting material of LRRK1 that was used for the Kinase assay is Amount1 µg then split the sample into five aliquots of Amount200 ng each to inject on MS. The reminder of the sample can be injected on a different mass spectrometer to get an alternative fragmentation to HCD such as EThCD on Lumos or EAD on Sciex Zeno-TOF 7600 MS platforms.


Pipetting
Take Amount200 ng of the peptide digest of LRRK2 in Amount5 µL or Amount10 µL in LC-buffer and prepare it for the Evotips loading. The Evo tips are a versatile disposable trap columns that enables <0.1% carry-over between samples.

Pipetting
Prepare the Evotips as described in the Protocol in PMID: 33367571.
Place the Evotips on EvoSep autosampler and used the 30 sample per day (30SPD) method to execute the LC method through Xcalibur interface that is inline with Orbitrap Exploris 240 mass spectrometer.
EvoSep LC system injects and executes a partial elution of the sample from Evotip and loads onto the long storage loop in which the pre-formed gradient generated at the initial step. Following the loading the High-pressure pump pushes the sample into the analytical column (ReproSil-Pur C18, 1.9 µm beads by Dr Maisch. #EV1113).

The following MS instrument method can be constructed for the High-resolution HCD fragmentation analysis:

ABC
InstrumentThermo Scientific Orbitrap Exploris 240
LC systemEvoSep Liquid Chromatography system30 SPD method
Method duration45 min
MS Global settings:
Infusion mode: Liquid Chromatography
Expected LC peak width (s):15
Advanced Peak determination:TRUE
Default charge state:2
Internal mass calibration:off
Full scan settings:
Orbitrap resolution:120000
Scan range (m/z):375-1500
RF lens(%):70
AGC target:Custom
Normalized AGC target (%):300
Maximum injection Time mode:Custom
Maximum injection Time (ms):25
Micorscans:1
Data type:Profile
Polarity:Positive
Filters:
MIPSMonoisotopic peak determination:Peptide
Relax restrictions when too few precursors are found:TRUE
IntensityFilter Type: Intensity Threshold
Intensity Threshold:5.00E+03
Charge StateInclude charge state(s): 2 to 6
Include undetermined charge states: False
Dynamic ExclusionDynamic Exclusion Mode:Custom
Exclude after n times:1
Exclusion duration (s): 5
Mass Tolerance:ppm
Low:10
High10
Exclude isotopes: TRUE
Perform dependent scan on single charge state per precursor only: FALSE
Data DependentData Dependent Mode:Number of Scans
Number of Dependent Scans10
ddMS2 settingsIsolation Window (m/z):1.2
Isolation Offset:Off
Collision Energy Mode:Fixed
Collision Energy Type:Normalized
HCD Collision Energy (%):28
Orbitrap resolution:15000
First Mass (m/z):110
Scan range mode:Auto
AGC target:Standard
Maximum injection Time mode:Custom
Maximum injection Time (ms):100
Micorscans:1
Data type:Profile
Polarity:Positive

Data analysis
Data analysis

Transfer the raw data to search with Thermo Scientific Proteome Discoverer 2.4 Software suite that is integrated with Sequest-HT search algorithm.
Note
As the PD 2.4 software is commercial software suite, if you don’t have access to it consider in using Open-source package like MaxQuant or FragPipe.


Optional
We recommend creating a custom protein sequence FASTA file rather than using the entire Uniprot Human or Mouse proteome FASTA file. For example: Copy the Human LRRK1 FASTA sequence and past it into a Notepad++ and save with LRRK1.FASTA .
Note
Ensure if you have any N-ter or C-ter GFP or HA tag of a recombinant LRRK1 and append the sequence accordingly).

Import the LRRK1.FASTA sequence into the PD 2.4 software.
Construct the Processing and Consensus workflows

ABC
------------------------------------------------------------------
The Processing workflow tree
------------------------------------------------------------------
(0) Spectrum Files
(1) Spectrum Selector
(2) Sequest HT
(3) Fixed Value PSM Validator
(4) IMP-ptmRS
(5) Minora Feature Detector
------------------------------------------------------------------
Processing node 0 Spectrum Files
------------------------------------------------------------------
Input Data Note
File Name(s) Specify the sample condtion and the Enyzme associated with the digestion
RN-AM_211216_LRRK1_+PKC_Tryp-LysC_01.raw
RN-AM_211216_LRRK1_+PKC_Tryp-LysC_01.raw
RN-AM_211216_LRRK1_-PKC_Tryp-LysC_01.raw
RN-AM_211216_LRRK1_-PKC_Tryp-LysC_01.raw
------------------------------------------------------------------
Processing node 1 Spectrum Selector
------------------------------------------------------------------
1. General Settings
Precursor Selection Use MS1 Precursor
Use Isotope Pattern in Precursor Reevaluation True
Provide Profile Spectra Automatic
2. Spectrum Properties Filter
Lower RT Limit0
Upper RT Limit0
First Scan0
Last Scan0
Lowest Charge State0
Highest Charge State0
Min. Precursor Mass350 Da
Max. Precursor Mass5000 Da
Total Intensity Threshold0
Minimum Peak Count1
3. Scan Event Filters
Mass Analyzer Is FTMS
MS Order Is MS2; MS1
Activation Type Is HCD
Min. Collision Energy0
Max. Collision Energy1000
Scan Type Is Full
Polarity Mode Is +
4. Peak Filters
- S/N Threshold (FT-only)1.5
5. Replacements for Unrecognized Properties
Unrecognized Charge Replacements Automatic
Unrecognized Mass Analyzer Replacements FTMS
Unrecognized MS Order Replacements MS2
Unrecognized Activation Type Replacements HCD
Unrecognized Polarity Replacements +
Unrecognized MS Resolution@200 Replacements120000
Unrecognized MSn Resolution@200 Replacements30000
6. Precursor Pattern Extraction
Precursor Clipping Range Before 2.5 Da
5.5 Da
------------------------------------------------------------------
Processing node 2 Sequest HT
------------------------------------------------------------------
1. Input Data
Protein Database LRRK1.FASTA
Enzyme Name Trypsin (Full)Here, specify AspN and Chymotrypsin separately fof the searches associated with those conditions
Max. Missed Cleavage Sites2
Min. Peptide Length7
Max. Peptide Length144
Max. Number of Peptides Reported10
2. Tolerances
Precursor Mass Tolerance 10 ppm
Fragment Mass Tolerance 0.05 Da
Use Average Precursor Mass False
Use Average Fragment Mass False
3. Spectrum Matching
Use Neutral Loss a Ions True
Use Neutral Loss b Ions True
Use Neutral Loss y Ions True
Use Flanking Ions True
Weight of a Ions0
Weight of b Ions1
- Weight of c Ions0
Weight of x Ions0
Weight of y Ions1
Weight of z Ions0
4. Dynamic Modifications
Max. Equal Modifications Per Peptide3
Max. Dynamic Modifications Per Peptide4
- 1. Dynamic Modification Oxidation / +15.995 Da (M)
- 2. Dynamic Modification Phospho / +79.966 Da (S, T, Y)
7. Static Modifications
- 1. Static Modification Carbamidomethyl / +57.021 Da (C)
------------------------------------------------------------------
Processing node 3 Fixed Value PSM Validator
------------------------------------------------------------------
1. Input Data
Maximum Delta Cn0.05
Maximum Rank0
------------------------------------------------------------------
Processing node 4 IMP-ptmRS
------------------------------------------------------------------
1. Scoring
PhosphoRS Mode True
Report only PTMs True
Use Diagnostic Ions True
Use Fragment Mass Tolerance of Search Node True
Fragment Mass Tolerance 0.5 Da
Consider Neutral Loss peaks for CID, HCD and EThcD Automatic
Maximum Peak Depth8
Use a Mass accuracy correction False
2. Performance
Maximum Number of Position Isoforms500
Maximum PTMs Per Peptide10
------------------------------------------------------------------
Processing node 5 Minora Feature Detector
------------------------------------------------------------------
1. Peak & Feature Detection
Min. Trace Length5
- Max. ΔRT of Isotope Pattern Multiplets [min]0.2
2. Feature to ID Linking
PSM Confidence At Least High


AB
The Consensus workflow tree
------------------------------------------------------------------
(0) MSF Files
(1) PSM Grouper
(2) Peptide Validator
(3) Peptide and Protein Filter
(4) Protein Scorer
(5) Protein Grouping
(6) Peptide in Protein Annotation
(15) Modification Sites
(7) Protein FDR Validator
(16) Peptide Isoform Grouper
(10) Feature Mapper
(11) Precursor Ions Quantifier
Post-processing nodes
--------------------------------
(12) Result Statistics
(13) Display Settings
(14) Data Distributions
------------------------------------------------------------------
Processing node 0 MSF Files
------------------------------------------------------------------
1. Storage Settings
Spectra to Store Identified or Quantified
Feature Traces to Store All
2. Merging of Identified Peptide and Proteins
Merge Mode Globally by Search Engine Type
3. FASTA Title Line Display
Reported FASTA Title Lines Best match
Title Line Rule standard
4. PSM Filters
Maximum Delta Cn0.05
Maximum Rank0
Maximum Delta Mass 0 ppm
Hidden Parameters
MSF File(s)RN-AM_211216_LRRK1_Sequest-Trypsin-(1).msf
------------------------------------------------------------------
Processing node 1 PSM Grouper
------------------------------------------------------------------
1. Peptide Group Modifications
Site Probability Threshold75
------------------------------------------------------------------
Processing node 2 Peptide Validator
------------------------------------------------------------------
1. General Validation Settings
Validation Mode Automatic (Control peptide level error rate if possible)
Target FDR (Strict) for PSMs0.01
Target FDR (Relaxed) for PSMs0.05
Target FDR (Strict) for Peptides0.01
Target FDR (Relaxed) for Peptides0.05
2. Specific Validation Settings
Validation Based on q-Value
Target/Decoy Selection for PSM Level FDR Calculation Based on Score Automatic
Reset Confidences for Nodes without Decoy Search (Fixed Score thresholds) False
------------------------------------------------------------------
Processing node 3 Peptide and Protein Filter
------------------------------------------------------------------
1. Peptide Filters
Peptide Confidence At Least High
Keep Lower Confident PSMs False
Minimum Peptide Length7
Remove Peptides without Protein Reference False
2. Protein Filters
Minimum Number of Peptide Sequences1
Count Only Rank 1 Peptides False
Count Peptides only for Top Scored Protein False
------------------------------------------------------------------
Processing node 4 Protein Scorer
------------------------------------------------------------------
No parameters
------------------------------------------------------------------
Processing node 5 Protein Grouping
------------------------------------------------------------------
1. Protein Grouping
Apply Strict parsimony principle True
------------------------------------------------------------------
Processing node 6 Peptide in Protein Annotation
------------------------------------------------------------------
1. Flanking Residues
Annotate Flanking Residues of the Peptide True
Number Flanking Residues in Connection Tables1
2. Modifications in Peptide
Protein Modifications Reported Only for Master Proteins
3. Modifications in Protein
Modification Sites Reported All And Specific
Minimum PSM Confidence High
Report only PTMs True
4. Positions in Protein
Protein Positions for Peptides Only for Master Proteins
------------------------------------------------------------------
Processing node 15 Modification Sites
------------------------------------------------------------------
1. General
Report only PTMs True
only Master Proteins True
Motif Radius10
------------------------------------------------------------------
Processing node 7 Protein FDR Validator
------------------------------------------------------------------
1. Confidence Thresholds
Target FDR (Strict)0.01
Target FDR (Relaxed)0.05
------------------------------------------------------------------
Processing node 16 Peptide Isoform Grouper
------------------------------------------------------------------
No parameters
------------------------------------------------------------------
Processing node 10 Feature Mapper
------------------------------------------------------------------
1. Chromatographic Alignment
Perform RT Alignment True
- Maximum RT Shift [min]10
Mass Tolerance 10 ppm
Parameter Tuning Coarse
2. Feature Linking and Mapping
RT Tolerance [min]0
Mass Tolerance 0 ppm
Min. s/N Threshold5
------------------------------------------------------------------
Processing node 11 Precursor Ions Quantifier
------------------------------------------------------------------
1. General Quantification Settings
Peptides to Use Unique + Razor
Consider Protein Groups for Peptide Uniqueness True
Use Shared Quan Results True
Reject Quan Results with Missing Channels False
2. Precursor Quantification
Precursor Abundance Based on Intensity
Min. # Replicate Features [%]0
3. Normalization and Scaling
Normalization Mode Total Peptide Amount
Scaling Mode On All Average
4. Exclude Peptides from Protein Quantification
for Normalization Use All Peptides
for Protein Roll-Up Use All Peptides
for Pairwise Ratios Exclude Modified
5. Quan Rollup and Hypothesis Testing
Protein Abundance Calculation Summed Abundances
N for Top N3
Protein Ratio Calculation Pairwise Ratio Based
Maximum Allowed Fold Change100
Imputation Mode None
Hypothesis Test t-test (Background Based)
6. Quan Ratio Distributions
- 1st Fold Change Threshold2
- 2nd Fold Change Threshold4
- 3rd Fold Change Threshold6
- 4th Fold Change Threshold8
- 5th Fold Change Threshold10


If the database search is to be done using MaxQuant then refer below settings


AB
ParameterValue
Version2.0.3.0
User nameRNirujogi
Machine nameMRC-MS-R640-4
Date of writing05/23/2022 15:15:41
Include contaminantsTRUE
PSM FDR0.01
SM FDR Crosslink0.01
Protein FDR0.01
Site FDR0.01
Use Normalized Ratios For OccupancyTRUE
Min. peptide Length7
Min. score for unmodified peptides0
Min. score for modified peptides40
Min. delta score for unmodified peptides0
Min. delta score for modified peptides6
Min. unique peptides0
Min. razor peptides1
Min. peptides1
Use only unmodified peptides andTRUE
Modifications included in protein quantificationOxidation (M);Acetyl (Protein N-term);Deamidation (NQ)
Peptides used for protein quantificationRazor
Discard unmodified counterpart peptidesTRUE
Label min. ratio count2
Use delta scoreFALSE
iBAQFALSE
iBAQ log fitFALSE
Match between runsFALSE
Find dependent peptidesFALSE
Fasta fileC:\Raja\Database\LRRK1.FASTA
Decoy moderevert
Include contaminantsTRUE
Advanced ratiosTRUE
Fixed andromeda index folder
Combined folder location
Second peptidesTRUE
Stabilize large LFQ ratiosTRUE
Separate LFQ in parameter groupsFALSE
Require MS/MS for LFQ comparisonsTRUE
Calculate peak propertiesFALSE
Main search max. combinations200
Advanced site intensitiesTRUE
Write msScans tableFALSE
Write msmsScans tableTRUE
Write ms3Scans tableTRUE
Write allPeptides tableTRUE
Write mzRange tableTRUE
Write DIA fragments tableFALSE
Write DIA fragments quant tableFALSE
Write pasefMsmsScans tableTRUE
Write accumulatedMsmsScans tableTRUE
Max. peptide mass [Da]4600
Min. peptide length for unspecific search8
Max. peptide length for unspecific search25
Razor protein FDRTRUE
Disable MD5FALSE
Max mods in site table3
Match unidentified featuresFALSE
Epsilon score for mutations
Evaluate variant peptides separatelyTRUE
Variation modeNone
MS/MS tol. (FTMS)20 ppm
Top MS/MS peaks per Da interval. (FTMS)12
Da interval. (FTMS)100
MS/MS deisotoping (FTMS)TRUE
MS/MS deisotoping tolerance (FTMS)7
MS/MS deisotoping tolerance unit (FTMS)ppm
MS/MS higher charges (FTMS)TRUE
MS/MS water loss (FTMS)TRUE
MS/MS ammonia loss (FTMS)TRUE
MS/MS dependent losses (FTMS)TRUE
MS/MS recalibration (FTMS)FALSE
MS/MS tol. (ITMS)0.5 Da
Top MS/MS peaks per Da interval. (ITMS)8
Da interval. (ITMS)100
MS/MS deisotoping (ITMS)FALSE
MS/MS deisotoping tolerance (ITMS)0.15
MS/MS deisotoping tolerance unit (ITMS)Da
MS/MS higher charges (ITMS)TRUE
MS/MS water loss (ITMS)TRUE
MS/MS ammonia loss (ITMS)TRUE
MS/MS dependent losses (ITMS)TRUE
MS/MS recalibration (ITMS)FALSE
MS/MS tol. (TOF)40 ppm
Top MS/MS peaks per Da interval. (TOF)10
Da interval. (TOF)100
MS/MS deisotoping (TOF)TRUE
MS/MS deisotoping tolerance (TOF)0.01
MS/MS deisotoping tolerance unit (TOF)Da
MS/MS higher charges (TOF)TRUE
MS/MS water loss (TOF)TRUE
MS/MS ammonia loss (TOF)TRUE
MS/MS dependent losses (TOF)TRUE
MS/MS recalibration (TOF)FALSE
MS/MS tol. (Unknown)20 ppm
Top MS/MS peaks per Da interval. (Unknown)12
Da interval. (Unknown)100
MS/MS deisotoping (Unknown)TRUE
MS/MS deisotoping tolerance (Unknown)7
MS/MS deisotoping tolerance unit (Unknown)ppm
MS/MS higher charges (Unknown)TRUE
MS/MS water loss (Unknown)TRUE
MS/MS ammonia loss (Unknown)TRUE
MS/MS dependent losses (Unknown)TRUE
MS/MS recalibration (Unknown)FALSE
Site tablesDeamidation (NQ)Sites.txt;Oxidation (M)Sites.txt;Phospho (ST)Sites.txt

Data analysis and Visualization
Data analysis and Visualization
Manually verify the MS/MS spectrum and phosphorylation localization score within PD2.4.
Now export the filtered Phosphosites from modifications table for each of the sample/category
Use the below scripts for parsing and combining the data to generate a heatmap representation.
Note
The below script can also be accessed from the Alessi lab gihub web page: https://github.com/Alessi-Lab/LRRK1_phosphosites)

The script below would first read phosphosite mapping result, then map them on to the original protein amino acid sequence through combining PeptideGroups and ModificationSites result text file. The data would be filtered by probability greater or equal to 75 and grouped by the different tryptic digestion enzymes used. Only entries with the highest abundance values according to the unique motif, position and sample condition are kept. Then based on the sequence length, the data was divided into instances of 500 amino acid continuous span on the protein sequence. Each of these instances would be used to create a heatmap where the abundance of the peptide would be the heatmap color, the sample condition would be presented on the X-axis while the position of the phosphosites are represented in the Y-axis in ascending order.

import numpy as np import pandas as pd from glob import glob import re import seaborn as sns import matplotlib.pylab as plt if __name__ == "__main__": proteases = ["AspN", "Chymotrypsin", #"Trypsin" ] files = ["PeptideGroups", "ModificationSites"] phospho_re = re.compile(r"Phospho [S(\d+)\((\d+)\)]") results = {} for i in glob(r"\\mrc-smb.lifesci.dundee.ac.uk\mrc-group-folder\ALESSI\Toan\TS22D4_Phosphosite mapping_02\*.txt"): for p in proteases: if p in i: for f in files: if f in i: if p not in results: results[p] = {} results[p][f] = pd.read_csv(i, sep="\t") break break merged_df = [] columns = set() for p in proteases: pg = results[p][files[0]] ms = results[p][files[1]] for i, r in pg.iterrows(): pg.at[i, "Primary IDs"] = ";".join([r["Master Protein Accessions"], r["Annotated Sequence"][4:len(r["Annotated Sequence"])-4]]) phos = [] s = re.search("\[(\d+)-(\d+)\]", r["Positions in Master Proteins"]) pos = [] if s: pg.at[i, "Start"] = s.group(1) mod_count = r["Modifications"].count("]; ") if mod_count > 0: for m in r["Modifications"].split("]; "): if "Phospho" in m: s = re.search("\[(.+)", m) if s: for si in s.group(1).split("; "): sire = re.search("(\w)(\d+)\(", si) if sire: phos.append("".join([sire.group(1), sire.group(2)])) pos.append(str(int(sire.group(2)) + int(pg.at[i, "Start"]) - 1)) else: if "Phospho" in r["Modifications"]: s = re.search("\[(.+)", r["Modifications"]) if s: for si in s.group(1).split("; "): sire = re.search("(\w)(\d+)\(", si) if sire: phos.append("".join([sire.group(1), sire.group(2)])) pos.append(str(int(sire.group(2)) + int(pg.at[i, "Start"]) - 1)) pg.at[i, "Position"] = pos pg.at[i, "Phospho"] = phos pg = pg.explode(["Phospho", "Position"]) pg = pg[pd.notnull(pg["Phospho"])] pg["Position"] = pg["Position"].astype(int) for i, r in ms.iterrows(): ms.at[i, "Primary IDs"] = ";".join([r["Protein Accession"], r["Peptide Sequence"]]) rpg = pg[[i for i in pg.columns if i.startswith("Abundance")] + ["Primary IDs", "Phospho", "Position", "Modifications"]] rename = {} for i in rpg.columns: if "Abundance" in i: rename[i] = re.sub("Abundance: F\d+: Sample, ", "", i) columns.add(rename[i]) print(rpg["Primary IDs"]) print(ms["Primary IDs"]) rpg = rpg.rename(columns=rename) ms["Phospho"] = ms["Target Amino Acid"] + ms["Position in Peptide"].astype(str) ms["Enzymes"] = p df = ms.merge(rpg, left_on=["Primary IDs", "Phospho"], right_on=["Primary IDs", "Phospho"]) merged_df.append(df) merged_df = pd.concat(merged_df, ignore_index=True) merged_df = merged_df[merged_df["Site Probability"]>=75] result = pd.melt(merged_df, id_vars=[ "Phospho", "Position_y", "Enzymes", "Motif"], value_vars=list(columns), var_name="Samples", value_name="Abundance") a = result.groupby([ #"Phospho", "Position_y", "Samples", "Enzymes", "Motif"]).max() a.reset_index(inplace=True) print(a["Samples"]) a["Conditions"], a["Replicates"] = a["Samples"].str.split("Rep-", expand=True) for i, g in a.groupby([ # "Phospho", "Position_y", "Motif"]): remove_motif = True for i2, g2 in g.groupby(["Enzymes", "Conditions"]): if len(g2[pd.notnull(g2["Abundance"])].index) > 1: remove_motif = False break if remove_motif: a["Motif"].loc[g.index] = "" a.sort_values("Position_y", inplace=True) e = 1 n = 500 samples = a["Samples"].unique() samples_columns = [] for p in proteases: for s in samples: samples_columns.append((p, s)) multiindex = pd.MultiIndex.from_tuples(samples_columns, names=["Enzymes", "Samples"]) while n: c = a[(a["Position_y"] <= n)&(a["Position_y"] > (n-500))] fontsize_pt = plt.rcParams['ytick.labelsize'] dpi = 72.27 top_margin = 0.2 bottom_margin = 0.2 left_margin = 0.2 right_margin = 0.2 figure_height = (len(c.index)/10) / (1 - top_margin - bottom_margin) figure_width = 10 / (1-left_margin-right_margin) c = c.set_index([ #"Phospho", "Position_y", "Samples", "Enzymes", "Motif"]) c = c.unstack("Enzymes") b = pd.pivot_table(c, values="Abundance", columns="Samples", index=["Position_y", #"Phospho", "Motif"]) b.fillna(0, inplace=True) b = b.T for i in b.columns: b0 = b[i][b[i]==0] b[i] = (np.log2(b[i], where=b[i]>0) - np.log2(b[i], where=b[i]>0).mean()) / np.log2(b[i], where=b[i]>0).std(ddof=1) for ind in b0.index: b[i].loc[ind] = np.nan b = b.T new_df = pd.DataFrame(index=b.index, columns=multiindex) for i in new_df.columns: if i in b.columns: new_df[i] = b[i] else: new_df[i].fillna(0, inplace=True) new_df.to_csv(f"merged{n}.csv") fig, ax = plt.subplots( figsize=(figure_width, figure_height), gridspec_kw=dict(top=1-top_margin, bottom=bottom_margin, left=left_margin, right=1-right_margin) ) mask = np.isnan(b) sns.heatmap(new_df, cmap="YlGnBu", mask=mask, square=True, ax=ax) ax.set_facecolor("silver") ax.xaxis.tick_top() ax.xaxis.set_label_position('top') for label in ax.get_yticklabels(): label.set_weight("bold") for label in ax.get_xticklabels(): label.set_weight("bold") plt.xticks(rotation=90) plt.savefig(f"result{n}.pdf") for i, r in b.iterrows(): if i[1] != "": p = re.compile(r"[RK]\w[ts]\w\w[RK]") s = re.search(p, i[1]) if s: print(i) n += 500 e += 1 if n >= a["Position_y"].max(): break

Computational step