After all other acquisition parameters (especially spectral widths and time-domain points) are set, change the FnTYPE parameter to 'non-uniform sampling' (type 'eda' and select 'Experimental' to get correct parameter window).
Navigate down to the 'NUS' section in the 'eda' parameter window and set the desired NusAMOUNT [%] sampling density.
For adequate reconstruction, number of NUS points should be larger than the number of expected peaks. 3D HNCA yields 2 peaks per residue, thus a 100-residue protein would require more than 200 NUS points.
After this you have the option of using either the built-in sampling schedule generator in Topspin or a third-party one.
To use the built-in sampling schedule generator in TopSpin set the NUSLIST parameter to 'automatic'. The sampling schedule will then be generated at acquisition start, and will be purely random apart from point density weighting according to NusJSP and NusT2 parameters.
A better way to generate the sampling schedule is with nusPGSv8 AU program. This AU program uses NusAMOUNT and TD values of the current experiment to generate a random schedule with 'Poisson gap' point spacing, and offers additional options for point density weighting and sampling order. ( see protocol 'Poisson Gap NUS Acquisition Setup', and attached files 'nusPGSv8' and 'poissonv3'). To use this method, type 'nusPGSv8' on the command line. You can typically accept the default values in pop-up dialog windows, since they are suitable for most applications. A schedule will be generated and will be stored to the parameter NUSLIST.
If nusPGSv8 is not installed, copy the attached file 'nusPGSv8' to your user AU directory, /opt/topspin.X.X.X/exp/stan/nmr/au/src/user, and copy the binary file 'poissonv3' to /opt/topspinX.X.X/prog/bin.