Jan 11, 2022

EEL FISH

DOI

dx.doi.org/10.17504/protocols.io.t92er8e

Lars E. Borm¹ ¹Karolinska Institute Stockholm

Lars E. Borm Karolinska Institute Stockholm

DOI: dx.doi.org/10.17504/protocols.io.t92er8e

Protocol Citation: Lars E. Borm 2022. EEL FISH. protocols.io https://dx.doi.org/10.17504/protocols.io.t92er8e

Manuscript citation: <u>Nature Biotechnology: Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH</u>

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited


Protocol status: Working We use this protocol and it's working

Created: October 03, 2018

Last Modified: January 11, 2022

Protocol Integer ID: 16410

Keywords: EEL, smFISH, RNA, spatial, spatial transcriptomics, transcriptomics, FISH, in situ, in situ hybridization, single molecule, electrophoresis, electricity, fluorescent, EEL FISH,

Abstract

Protocol to perform RNA transfer to a surface using the EEL method and detection with an automated fluidics and imaging machine called ROBOFISH.

Paper title: Scalable in situ single-cell profiling by electrophoretic capture of mRNA

Website: mousebrain.org

Instructions to build the **ROBOFISH system**:

Code for the **ROBOFISH system**

Guidelines

Working with coverslips can be challenging because they are fragile. The experiment takes some time and it is extremely frustrating when a glas breaks late in the experiment. Therefore, we advise to practice handling the glasses. Take safety googles and break a couple of glasses while handling them, to get a feel for the limits. Sounds stupid but it is totally worth it.

Materials

EEL electrophoresis holder:

EEL_Base_v2.STL

List of Chemicals

A	В	С	D
Name	Shape/size	Distributor	ID
ITO coverslips	24x60mm, #1.5, sur face resistivity of 30 -60 Ω/square	Diamond coatings	Custom size order
2-Propanol	2.5 liter	Sigma	34863
Aceton	1 liter	Sigma	270725
dH2O	10 X 500 ml	Thermo	10977035
SSC 20X	1 L	Sigma	S6639
(3-Glycidyloxypropyl)Trimethoxy silane	100 ml	Sigma	440167
Glass staining trough	105 mm × 85 mm × 70 mm	Sigma	BR472200-10EA
Coverslip rack Epridia E103	25 slides, 22mm (pu t 24mm coverslips d iagonal)	Fisher Scientific	12638436
Hybrislip	24x24 mm	Sigma	GBL722222
Poly-dT 60	/5AmMC6/UUUUGA CTCGTTTTTTTTT TTTTTTTTTTTTTTTTTTTTTTT	IDT	Custom
Moist Mark Plus pen	Pen	VWR	MP1000
Poly-D-lysin	5 mg	Sigma	P6407
Europium beads 0.2um (See also item 50)	1ml	Thermo	F20881
Propidium lodide	10ml	Sigma	P4866
DTT	10 ml	Sigma	43816
Triton X-100	100 ml	Sigma	T8787
TBE 10X	1L	Thermo	15581-044
Urea	1 kg (Advised to buy smaller package)	Merck	1.08487.1000
PDMS / Sylgard		Dow Corning	Sylgard 184
Copper foil tape with conductive adhesive	5mm x 30m	m.nu (not availabl e anymore, replace ment part: Adafrui t copper tape with	

A	В	С	D
		conductive adhesi ve)	
Proteinase K (NEB)	1 ml	NEB	P8107S
SDS	500 ml	Sigma	05030
Tris HCl pH7.4	1L	Sigma	T2194
Superase RNase inhibitor	10,000 UN	Thermo	AM2696
PBS	1L	Thermo	AM9625
PFA	10 x 10 ml	Thermo	28908
Dextran Sulfate	50 g	Sigma	D8906
E. Coli tRNA	500 mg	Roche	10109550001
RVC	5 ml, 200mM	Sigma	R3380
BSA	50ml, 30%	Sigma	126621
Formamide	500 g	Thermo	AM9342
Glycerol	500 ml	Sigma	G5516
ксі	1 kg (Advised to buy smaller package)	Merck	1.04936.1000
EDTA	100 ml, 0.5 M	Thermo	AM9260G
Tris HCl pH8.0	1L	Sigma	T3038
PCD	25 UN	Sigma	P8279
DBA	25 g	Sigma	37580
NaOH	100 ml	Sigma	72068
TROLOX	5 g	Sigma	238813
EtoH	1L	Histolab	UN1170
TCEP	5 ml	Thermo	77720
Mineral Oil	500 ml	Sigma	M5904
Penicillin-Streptomycin	100 ml (10.000U/m l)	Thermo	15140122
Buffer containers ROBOFISH:			
Nalgene media bottle 2019 style	125 ml	Sigma	Z364495-48EA
Glass bottle with septum cap	60 ml	Sigma	23229
Glass bottle	15 ml	Sigma	27162
Bottle septum cap for 27162	18 mm	Sigma	27020
Europium beads 1um	10ml	Thermo	Custom order. Conta ct Thermo

Other materials

EEL holder:

3D print the EEL electrophoresis holder. (See file above)

In the center you should place a 20 x 20 x 5 mm piece of PDMS, this can be made by casting a 5mm thick sheet of PDMS in a petri dish and cutting it to size.

You also need two strips of 22 x 5 x 1.5 mm of PDMS to space the two glasses during electrophoresis. The 1.5 mm is the critical dimension and a convenient way of making a 1.5mm sheet of PDMS is using a 1.5 mm Western Blot gel casting cassette.

General equipment:

Pipettes + tips Sonicator bath Beaker glas Power source (AA battery, Lab power supply, Keithley 2450 SMU) Electrical wires Oven that can reach 30-37C Petri dishes Scalpel Forceps Parafilm 24x30mm coverslips or similar Gel loading pipet tips P200

Safety warnings

Take special care when handling Formamide and PFA.

Before start

The protocol lists a number of buffer that can be prepared beforehand: 30% formamide hybridization mix. Step 33. 10% formamide hybridization mix. Step 39. PCD stock solution. Step 39. DBA stock solution. Step 39. TROLOX stock solution. Step 39.

ITO glass cleaning

1 Place ITO slides in a beaker glass and submerge them in Acetone. Cover the beaker glass with aluminium foil and

sonicate 🚫 00:20:00 on high power.

- 2 Discard the Acetone and submerge the slides in 2-Propanol. Replace the water in the sonicator if it has warmed up. Cover the beaker glass with aluminium foil and sonicate 00:20:00 on high power.
- 3 Discard the 2-Propanol and submerge the slides in dH₂O. Replace the water in the sonicator if it has warmed up. Cover the beaker glass with aluminium foil and sonicate 00:20:00 on high power.
- 4 Discard the dH2O and replace with fresh dH2O. The slides should be stored in water. Wait at least a couple of days before using. The slides can be used for up to a month, after which they might show white discoloring and should not be used.

Surface functionalization

- 5 Place the slides in a rack and let them dry. Optional use compressed air or nitrogen gas to remove larger droplets.
- 6 In a dedicated glass staining jar, prepare <u>A</u> 300 mL of <u>IMJ 2 % volume</u> GPTMS ((3-Glycidyloxypropyl)Trimethoxysilane) in anhydrous acetone. Put the jar in a box/bag with a steady nitrogen gas flow so that the coating is performed under an inert environment.
- 7 Submerge the rack with slides into the Functionalization solution for 02:00:00 under nitrogen atmosphere.
- 8 Pour out the acetone GPTMS mix. Submerge the slides with acetone to wash them, then discard the acetone.
- 9 Dry the slides with nitrogen gas.

Capture slide coating

Find the conductive side of the ITO glass using a multimeter set to measure resistance. Add 40 µL of Poly-T spotting solution and incubate 01:00:00 at 25 °C under a 24x24mm plastic coverslip (Hybrislip - Grace biolabs). Optionally, with a solvent prove marker (like Moist Mark Plus, Cancer Diagnostics Inc.) indicate the area of the Poly-T coating.

Component	Final concentration	Stock concentration	Quant ity for 45 ul
Poly-T	10 uM	100 uM	4.5 ul
Schot spotting sol ution	1X	2X	22.5 u I
dH2O	-	-	18 ul

11 To remove the plastic coverslip without damaging the coating, place a couple of drops of SSC 2X on the edge of the plastic cover slip. Wait until the SSC has moved under the plastic coverslip and then lift the corner with a forceps.

Wash the slide 5 times with SSC 2X by pipetting it onto the coated area and aspirating it from one of the corners.

- 12 Wash the the slide twice with dH_2O .
- Block remaining epoxy () 00:30:00 with ▲ 60 µL [M] 0.1 Mass / % volume Poly-D-Lysin in dH₂O at room temperature. (The PDL mix should spread out over the oligo-dT coated area and does not need to be covered by a plastic coverslip.)
- 14 Wash 3 times with dH_20 .

- 15 Mix Europium doped beads small (200nm) and big (1um) 1:333 each in dH₂O and place ~ \blacksquare 100 µL on the slide, and make sure it covers the full area. Incubate \bigcirc 00:03:00 .
- 16 Pipett off the bead mixture from a corner of the coated area and let the slide dry to the air. Avoid residue in the capture area and do not touch the surface. Proceed to tissue capture.

Tissue sectioning

Make a → + 10 µm cryosection of the tissue sample and catch it on the slide onto the capture area, and let it dry for a few minutes.
Place slide in a container, like a petri dish, so that frost can not accumulate on the sample.
Store at -80 °C until further use.

Reference imaging (optional)

18 Thaw the section and on the back side make two reference crosses on either side of the tissue section using a solvent prove and non-fluorescent marker pen (like Moist Mark Plus, Cancer Diagnostics Inc.). These crosses will serve as the reference to find the sample area after the tissue has been digested.

19 Stain the nuclei for 🕥 00:05:00 with [M] 1 ug/ml Propidium lodide in SSC 2X.

- 20 Wash 5 times with \angle 200 μ L SSC 2X.
- 21 Cut a gasket out of parafilm and place it around the tissue section and reference crosses. Close the open top with a 24x32mm glass coverslip (or any other fitting size). Make sure no air bubbles are present on the tissue or crosses by adding sufficient SSC 2X to the sample. When closed, drain the excess SSC 2X from a side with a paper towel.
- 22 When using the provided microscope Job for Nikon microscopes running NIS Elements software, follow the steps in the Job. Select the New Experiment option.

When using other software:

- Make a quick overview image with a low power objective (like 10X) to generate points for Nuclei imaging and RNA signal imaging later on.
- Generate points for imaging the RNA signal of the sample with a high power objective (like 60X). This is Point_set_1

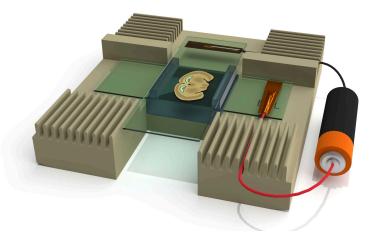
- Generate points to image the nuclei with a medium power objective (like 40X). This is Point_set_2.
- Image the nuclei with the medium power objective using Point_set_2. These images will be used for segmentation. It is important to also image the beads in this step so that the images can be aligned.
- With the high power objective add the locations of the crosses to the previously generated Point_set_1 and save. Typically we make bright-field images of the 4 armpits of the crosses. Because the relative location between the sample and the crosses is now known, they can be used to find the sample area later on.

Electrophoresis

- 23 Remove the top coverslip, gasket and SSC 2X.
- 24 Permeabilize the sample for 🚫 00:05:00 in permeabilization buffer:

Component	Final concentration	Stock concentration	Quant ity for 1ml
Dithiothreitol (DTT)	10 mM	100 mM	100 ul
Triton X-100	0.1 %	-	1 ul
ТВЕ	1X	10X	100 ul
dH2O	-	-	799 ul

Permeabilization buffer. Make fresh. Expected usage for 1 experiment: 200ul.


25 Wash 5 time with TBE 1X.

- 26 Assemble the electrophoresis setup:
 - Stick a short wire to the sample ITO coverslip using copper tape with conductive adhesive (Anode).
 - Do the same on a clean uncoaded ITO slide to make the other electrode (Cathode).
 - Place the coverslip with the sample in the EEL holder and slide the wire in one of the slits to keep the slide in place.
 - Place two 1.5 mm thick PDMS strips on either side of the sample.
 - Cover with the top electrode perpendicular to the sample slide, and slide the wire in one of the slits. Make sure the conductive side is facing the sample.

- Optionally place a weight on top of the sample to keep the slides neatly stacked.
- Connect the power source to the two wires. The capture slide with the sample should be connected to the positive pole making the Anode. The top electrode should be connected to the negative pole, making the Cathode.
- Add the electrophoresis buffer:

Component	Final concentration	Stock concentration	Quantity for 1ml
Dithiothreitol (DT T)	10 mM	100 mM	100 ul
Urea	1 M	10 M	100 ul
ТВЕ	1X	10X	100 ul
dH2O	-	-	700 ul

Electrophoresis buffer. Make fresh. Expected usage for 1 experiment: 400 - 600 ul.

The bottom glass contains the tissue and is placed on top of the EEL holder. This is the capture slide and is connected to the positive pole of the power source (here depected as a battery) with the red wire and the coper tape. Two PDMS spacer separate the sample with the top electrode, which is connected to the negative pole with the black wire and coper tape. Pipett the electrophoresis buffer intbetween the glasses.

Turn on the power source set to 10 Volts/cm and electrophorese for 00:20:00 . When using 1.5 mm PDMS spacer set to 1.5V. We recomend to use a laboratory power supply but a 1.5V battery will work.

Tissue digestion

28 Turn off the power source, disconnect the wires and remove the electrophoresis buffer with a paper tissue. Now, remove the electrophoresis sandwich from the EEL holder and place on a flat surface. Carefully remove the top electrode and the PDMS spacers, clean these later for reuse. While pushing the capture slide onto a flat surface, carefully remove the wire and copper tape. Keep forces horizontal in order to not break the glass. Place glass in a petri dish.

29 Incubate the sample 🚫 00:05:00 in 6X SSC.

30 Wash the sample two times with 2X SSC.

31 Digest the tissue 3 times for $\bigcirc 00:10:00$ with $_ 200 \ \mu L$ of digestion buffer at $\$ 30 \ ^{\circ}C$. The tissue should visibly digest over the incubation steps.

Make sure no buffers with SDS come under the glass slide, they will dissolve the ink of the reference crosses.

A	В	С	D
Component	Final concentration	Stock concentration	Quant ity for 1ml
Proteinase K (NE B)	1 U/ml		2 ul
SDS	1%	20%	50 ul
Tris HCl pH 7.4	20 mM	1 M	20 ul
Superase			5 ul
dH2O	-	-	923.5 0 ul

Digestion buffer for mouse adult brain tissue. Make fresh. Expected usage for 1 experiment: 600 ul.

Component	Final concentration	Stock concentration	Quant ity for 1ml
Proteinase K (NEB)	3.2 U/ml		4 ul
SDS	1%	20%	50 ul
Tris HCl pH 7.4	20 mM	1 M	20 ul
Superase			5 ul
dH2O	-	-	921 ul

5m

Digestion buffer for human adult brain tissue. Make fresh. Expected usage for 1 experiment: 600 ul.

Adjust the digestion protocol for each type of tissue. The concentration of Protinase K, the incubation time or number of washes can be adjusted. Under-digestion, will leave tissue on the capture slide, which can be seen as increased background signal and signal distributed in the Z-axis during imaging. Over digestion can lead to reduced RNA capture (Presumably because the PDL gets degraded).

- 32 Wash 3 times 00:05:00 with 5% SDS in SSC 2X at 30C. Place the 5% SDS in SSC at 30C beforehand and during these steps.
- 33 Wash 5 times with SSC 2X.
- 34 Fix the RNA for 👏 00:10:00 with 4% PFA in 1X PBS.
- 35 Wash 5 times with SSC 2X.

Encoding probe hybridization

36 Using a Speed Vac, dry the probe stock solution in a low binding Eppendorf tube and afterwards dissolve in ▲ 20 µL of 30% formamide hybridization mix. Probes should be hybridized at IMI 1 nanomolar (nM) per individual probe. (If you have 1000 individual probes, the total concentration should be 1000 nM to have 1nM per individual probe)

-	5.58 ml			
20X	1 ml			
-	1 gra m			
Mix the above and vortex untill Dextran is dissolved				
40 mg/ml	250 ul			
200 mM	100 ul			
e	- d 40 mg/ml			

BSA	200 ug/ml	30 % (w/v)	66.75
Formamide	30% (v/v)	-	3 ml

30% Formamide Hybridization mix. Can be stored at -20C. Expected usage for 1 experiment: 20 ul

37 Add a paper tissue to a petri dish and wet with some SSC 2X. Cover with a piece of parafilm and place two spacers on top. Place the slide on the spacers. The spacers are there to ensure that the liquid can not drain out during the incubation.

Remove as much of the liquid from the slide as possible. Add the Hybridizaion mix, be careful not to cause bubbles. Cover with a plastic coverslip (Hybrislip, Grace Biolabs). Close the petridish and place a few paper towels on top to prevent condensation on the lid during the incubation.

38 Incubate at least 👏 40:00:00 at 🖁 38.5 °C in the humidified petridish.

Automatic system

- 39 Take the slide out of the incubator. Place some SSC 2X on the edge of the plastic coverslip and wait until it is adsorbed, to safely remove the plastic coverslip.
- 40 Mount the slide in the Flow cell.
- 41 Place the flow cell on the microscope stage and connect to the fluidic system. Connect outlet to the waste bottle and connect the temperature control cable and hoses. Using the manual prime port, prime the chamber with SSC 2X using a syringe.
- 42 Make buffers for 16 rounds of readout imaging and place them in the system.

Hybridization mixes with fluorescent probes.

Component	Final concentration	Stock concentration	Quant ity for 40ml
dH2O	-	-	30.33 ml
SSC	2X	20X	4 ml
Dextran sulfate	0.1 g/ml	-	4 gra m
Mix the above and v ortex untill Dextran i s dissolved			

E. Coli tRNA	1 mg/ml	40 mg/ml	1 ml
RVC	2 mM	200 mM	400 ul
BSA	200 ug/ml	30 % (w/v)	267 ul
Formamide	30% (v/v)	-	4 ml

10% Formamide Hybridization mix. Can be stored at -20C. Aliquot 700 ul. Expected usage for 1 experiment: 16 aliquots or \sim 12 ml

For all 16 rounds add the fluorescent probes tot the 1	10% formamide hybridiation mix.
--	---------------------------------

A	В	С	D
Component	Final concentration	Stock concentration	Quant ity for 700 ul
10% Hybridization mix	-	-	700 ul
Fluorescent probe	50 nM	100 uM	0.35 u I

Probe mix. Make 700 ul mix for each round and put in system.

Wash buffer. 20% formamide.

Component	Final concentration	Stock concentration	Quant ity for 70 ml
SSC	2X	20 X	7 ml
Formamide	20% (v/v)	-	14 ml
dH2O	-	-	49 ml

20% formamide wash buffer. Prepare fresh in 250 ml Nalgene bottle. Expected usage ~60 ml

Wash buffer. 30% formamide.

A	В	С	D
Component	Final concentration	Stock concentration	Quant ity for 20 ml
SSC	2X	20 X	2 ml
Formamide	30% (v/v)	-	6 ml
dH2O	-	-	12 ml

30% formamide wash buffer. Prepare fresh in 250 ml Nalgene bottle. Expected usage ~10 ml

Imaging buffer stock solutions:

Component	Final concentration	Stock concentration	Quant itiy for 1.5ml
Glycerol	50%	-	750 ul
KCI	50 mM	1M	75 ul
EDTA	1 mM	0.5 M	3 ul
Tris-Hcl pH8.0	100 mM	1 M	150 ul
dH20	-	-	522 ul
Add 1.42 ml of abov e mix to the 2mg PC D enzyme bottle.			

Protocatechuate 3,4-Dioxygenase (PCD) enzyme stock solution 2 uM

Enzyme storage buffer. Add 1.42 ml to the dry PCD enzyme, gently mix and aliquot into 120 ul aliquots. Store at -20C.

3,4-Dihydroxybenzoic acid (DBA) stock solution 50mM

Component	Final concentration	Stock concentration	Quant ity for 20 ml
3,4-Dihydroxybenzoic acid	50 mM	-	154 m g
dH2O	-	-	19 ml
NaOH	50 mM	1 M	1 ml

DBA stock solution. Aliquot to 1ml and store at -20C.

6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (TROLOX) stock solution 200 mM

	Component	Final concentration	Stock concentration	Quantity for 5 ml
ſ	TROLOX			250 mg
	EtOH	-	Absolute	5 ml

TROLOX stock solution. Aliquot to 120ul aliquotes and store at -20C. Flush TROLOX bottle with Nitrogen gas before closing.

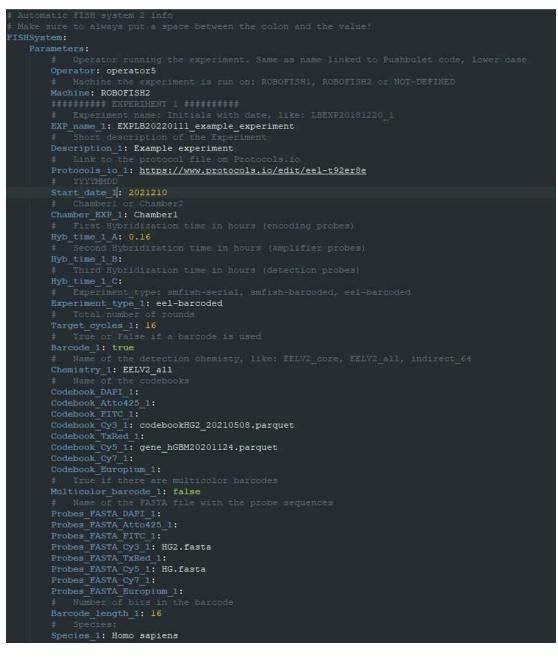
Imaging buffer.

A		В	С	D
Component		Final concentrati on	Stock concentration	Quant ity for 12 ml
SSC		2X	20X	1.2 ml
Trolox		2 mM	200 mM	120 ul
3,4-Dihydrox (DBA)	ybenzoic acid	5 mM	50 mM	1.2 ml
dH2O		-	-	9.36 ml
Degas the bi m chamber.	uffer in a vacuu			
Protocatech enase (PCD)	uate 3,4-Dioxyg	20 nM	2 uM	120 ul
Degas the bi m chamber.	uffer in a vacuu			
Add 700 ul n er the imagi	nineral oil to cov ng buffer			

Imaging buffer. Prepare fresh in 15ml glass vial with septum cap. Stick a thin needle through the septum to bleed air. Expected usage ~10ml.

Stripping buffer

А	В	С	D
Component	Final concentratio n	Stock concentration	Quantity for 5 0 ml
SSC	2X	20X	5ml
TCEP	100mM	0.5M	5ml
dH2O	-	-	40ml
Degass the buffer in a vacu um cahmber.			
Add 3ml of mineral oil to co ver the stripping buffer			


Stripping buffer. Prepare fresh in 60ml glass vial with septum cap. Stick a thin needle through the septum to bleed air. Expected usage ~ 45ml.

43 Once buffers are placed in the system, Start the ROBOFISH_user_program.py program by pasting the below command in an Anaconda command prompt:

python ROBOFISH_user_program.py

Enter "all" to update the experimental information. This will open Notepad++ wih the system info file.

Edit the information with all experimental metadata under Parameters.

Screenshot example of the info file with experimental metadata.

Give the names of the buffers connected to the various ports.

Ports:
Buffer connected to the Syringe pump
RunningBuffer: SSC2X
Fort 1-10 on acuator valve 1
P1: WB
P2: IB
P3: Waste
P4: Chamberl
25: SB
P6: HYB11
27: HYB12
P8: Valve2
P9: HYB13
P10: HYB14
Fort 1-10 on acuator valve 2 are numberd 11-20
P11: HYB01
P12: HYB02
P13: HYB03
P14: HYB04
P15: HYB05
P16: HYB06
P17: HYB07
P18: HYB08
P19: HYB09
P20: HYB10

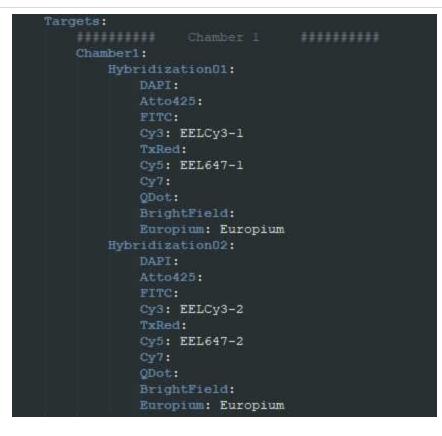
Port numbers and buffer names

Then fill in the volumes of the buffers that were placed in the system.

‡ Volume of all buffers in ul, Integer/float
Volumes:
RunningBuffer: 652939.0
<pre># Port 1-10 on acuator valve 1</pre>
P1: 40871.0
P2: 5450.0
P3: 1668428.0
P4: None
P5: 24627.0
P6: None
P7: None
P8: None
P9: None
P10: None
Port 1-10 on acuator valve 2 are numberd 11-20.
P11: None
P12: None
P13: None
P14: None
P15: None
P16: None
P17: None
P18: None
P19: None
P20: None

Screenshot example of the info file with buffer volumes.

Fill in the codes of the hybridization mixes. The code is C<chamber number>_<round number>. So chamber one hybridization round 6 is "C1_06".


Hybmix:				
+ Per	t 1-10 en acuat	or valve		
P1: #	₹B			
P2: #	te .			
P3: #	Naste			
P4: #	Inamberl			
25: #	3B			
P6:				
P7:				
P8: #	PORT TO VALVE 2			
29:				
P10:				
# Per	t 1-10 on acuat	or valve	2 are numbers	
P11: 0	21_01			
P12: 0	21_02			
P13:				
P14:				
P15:				
P16:				
P17:				
P16:				
P19:				
P20:				

Screenshot example of the info file with hybridization numbers.

Optionally add the names of the genes or detection probe code to the Targets. The System will take this information and put it in a round specific info file that will be placed with the images, so that downstream the targets and images can be matched.

Screenshot example of the info file with the round targets. In this example Round 1 will contain 5 genes in different channels of the microscope. "Cux2" is labeled with a green probe and is imaged with the FITC channel.

Screenshot example of the info file with the round targets. This is the codes we use for barcoded EEL experiments. The 1 or two indicates the bit location in the brcode.

After saving and closing the info file, and pressing enter in the ROBOFISH_user_program, a popup will open where you can tick the boxes of new buffers that need to be primed.

q	tk		-3		×
Prir	ne:				
Г	Port:	Running	Buffer	Buffer:	SSC2X
◄	Port:	P1	Buffer	: WB	
•	Port:	P2	Buffer	: IB	24
Г	Port:	P3	Buffer	Wast	e
Г	Port:	P4	Buffer	: Char	nber1
Г	Port:	P5	Buffer	: SB	1
Г	Port:	P6	Buffer	HYB	11
Г	Port:	P7	Buffer	HYB	12
Г	Port:	P8	Buffer	: Valve	e2
Г	Port:	P9	Buffer	HYB	13
	Port:	P10	Buffe	r: HYB	14
Г	Port:	P11	Buffe	r: HYB	01
Г	Port:	P12	Buffe	r: HYB	02
Г	Port:	P13	Buffe	r: HYB	03
Г	Port:	P14	Buffe	r: HYB	04
Г	Port:	P15	Buffe	r: HYB	05
Г	Port:	P16	Buffe	r: HYB	06
Г	Port:	P17	Buffe	r: HYB	07
Г	Port:	P18	Buffe	r: HYB	08
Г	Port:	P19	Buffe	r: HYB	09
10,000			Buffe		

Screenshot example of the priming tickbox. In this case the Washbuffer (WB) and Imaging buffer (IB) will be primed. (Only prime newly connected buffers and never prime hybridization mixes!)

44 Open a new terminal and start the Jupyter lab. In the first cell make sure that all the paths to the different folders and files are correct. Then, edit the fluidics program to your needs and start the scheduler to start the detection cycles. The program will notify the microscope when to start imaging.

Initiate system
import FISH2_functions
#Path to the database that is used to keep track of the experiment data. #database is automatically generated by the "FISH2_user_program.py" and prints the path after runing, copy the path to this location db_path = 'FISH_database\FISH_System2_db.sqlite'
#System specific path to start_imaging_file. If not present make a file called start_imaging_file.txt with a single 0. #Then paste the path here, and also use this path for the imaging program. start_imaging_file_path = "C:\\Users\\BL\\Desktop\\ROBOFISH\\FISH_database\\start_imaging_file.txt"
#System specific path to where the microscope saves the images. The info files will be put here. #Use double slashes "\\" but do not put the trailing slashes! Example "C:\\Folder\\subfolder" imaging_output_folder = "do\\To_Mond\\LBEXP2021119_EEL_HE_Sw_BiDum" #imaging_output_folder = "G\\To_Mond\\LBEXP2021883@EL_Mes_Golfactory_3"

See the full documentation of the ROBOFISH programs on the Github page: **ROBOFISH code and instructions.**

Labeling first round

45 The system will perform the labeling. These are the steps it will perform.

Wash 4 times 15 minutes with 30% formamide wash buffer at 47C.

- 46 Wash 4 times with SSC 2X.
- 47 Manually Inject 1ml of 4% PFA in 1X PBS into the chamber and fix for 10 minutes at 22C.
- 48 Manually wash with >5ml of SSC 2X at 22C.
- 49 Hybridize 10 minutes with the fluorescent probes at 37C.
- 50 Wash 3 times 3 minutes with 20% formamide washing buffer at 37C.
- 51 Wash 4 times with SSC 2X at 37C.
- 52 Set temperature to 22C and inject imaging buffer.

Imaging

53 The fluidics system should now have performed the first labeling and injected the imaging buffer into the flow cell.

Correct Point_set_1 using the reference crosses.

- Find one of the reference crosses and go to exactly the same part of the cross that was imaged before. Use the previously made picture to go to the same spot.
- Now correct the Point_set_1 positions and save the points.

When using the provided microscope Job for Nikon microscopes running NIS Elements software, follow the steps in the Job. Select the Readout option and load the corrected Point_set_1 for the imaging. Make sure the path to the Start Imaging file is correct. This can be found in the Job, in the N LOOP under the "MacroReadValueInFile" and in the "Reset_start_file". Both need to be correct.

Set up the perfect focus to focus on the surface.

Then start the imaging.

When using other software:

Make a program that can read the Start_imaging_file located in the "ROBOFISH/FISH_databse" folder and start imaging the corrected Point_set_1 when the value in the file is changed to 1 by the ROBOFISH program. When it is done imaging it should reset it to 0, so that the ROBOFISH program knows it can start the next round of labeling.

Labeling repeat round

54 This section can be repeated for as many rounds as needed. Followed by imaging.

Wash 4 times with SSC 2X at 22C.

- 55 Strip the fluorophores 2 times 10 minutes with the stripping buffer at 22C
- 56 Wash 6 times with SSC 2X.
- 57 Hybridize 10 minutes with the fluorescent detection probes at 37C.

58 Wash 3 times 3 minutes with 20% formamide washing buffer at 37C.

59 Wash 4 times with SSC 2X at 37C.

- 60 Set temperature to 22C and inject imaging buffer.
- 61 Image the signal.

Then: **E** <u>go to step #54</u> for the desired number of repeats.