Feb 08, 2024

Public workspaceCombinatorial selective ER-phagy remodels the ER during neurogenesis V.3

  • 1Harvard Medical School;
  • 2Max Planck Institute of Biochemistry;
  • 3Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry
  • Cristina Capitanio: *Joint second author;
  • Ian R. Smith: *Joint second author;
Open access
Collection Citation: Melissa Hoyer, Cristina Capitanio, Ian R. Smith, Julia C. Paoli, Anna Bieber, Yizhi Jiang, Joao A. Paulo, Florian Wilfling, Brenda A. Schulman, Harper JW 2024. Combinatorial selective ER-phagy remodels the ER during neurogenesis. protocols.io https://dx.doi.org/10.17504/protocols.io.81wgbx13nlpk/v3Version created by Melissa Hoyer
Manuscript citation:
Hoyer MJ, Capitanio, C, Smith IR*, Paoli, JC, Bieber, A, Jiang, Y, Paulo JA, Gonzalez-Lozano, MA, Wilfling, F, Schulman, BA, and Harper JW (2023). Combinatorial selective ER-phagy remodels the ER during neurogenesis.
*, equal contribution
License: This is an open access collection distributed under the terms of the Creative Commons Attribution License,  which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Protocol status: Working
We use this collection and it's working
Created: February 08, 2024
Last Modified: May 31, 2024
Collection Integer ID: 94913
Keywords: ASAPCRN, ER-phagy, induced neurons, axons, whole cell proteomics, differentiation, live cell fluorescence microscopy, Keima flux, autophagy
Funders Acknowledgement:
ASAP
Grant ID: ASAP-000282
Abstract
The endoplasmic reticulum (ER) employs a diverse proteome landscape
to orchestrate many cellular functions, ranging from protein and lipid
synthesis to calcium ion flux and inter-organelle communication. A case
in point concerns the process of neurogenesis, where a refined tubular
ER network is assembled via ER shaping proteins into the newly formed
neuronal projections to create highly polarized dendrites and axons.
Previous studies have suggested a role for autophagy in ER remodelling,
as autophagy-deficient neurons in vivo display axonal ER accumulation
within synaptic boutons, and the membrane-embedded ER-phagy receptor
FAM134B has been genetically linked with human sensory and autonomic
neuropathy. However, our understanding of the mechanisms underlying
selective removal of the ER and the role of individual ER-phagy receptors is
limited. Here we combine a genetically tractable induced neuron (iNeuron)
system for monitoring ER remodelling during in vitro differentiation with
proteomic and computational tools to create a quantitative landscape of ER
proteome remodelling via selective autophagy. Through analysis of single
and combinatorial ER-phagy receptor mutants, we delineate the extent to
which each receptor contributes to both the magnitude and selectivity of
ER protein clearance. We define specific subsets of ER membrane or lumenal
proteins as preferred clients for distinct receptors. Using spatial sensors and
flux reporters, we demonstrate receptor-specific autophagic capture of ER
in axons, and directly visualize tubular ER membranes within
autophagosomes in neuronal projections by cryo-electron tomography. This molecular
inventory of ER proteome remodelling and versatile genetic toolkit provide
a quantitative framework for understanding the contributions of individual
ER-phagy receptors for reshaping ER during cell state transitions.
Materials
REAGENT or RESOURCE SOURCE IDENTIFIER RRID
Antibodies
FAM134B Rabbit Polyclonal Antibody Proteintech 21537-1-AP RRID:AB_2878879
FAM134C Rabbit Polyclonal Antibody Sigma-Aldrich HPA016492 RRID:AB_1853027
CCPG1 Rabbit Polyclonal Antibody Cell Signaling Technology 80158 RRID:AB_2935809
TEX264 Rabbit Polyclonal Antibody Sigma-Aldrich HPA017739 RRID:AB_1857910
REEP1 Rabbit Polyclonal Antibody Sigma-Aldrich HPA058061 RRID:AB_2683591
REEP4 Rabbit Polyclonal Antibody Sigma-Aldrich HPA042683 RRID:AB_2571730
REEP5 Rabbit Polyclonal Antibody Proteintech 14643-1-AP RRID:AB_2178440
hFABâ„¢ Rhodamine Anti-Tubulin Antibody BioRad 12004166 RRID:AB_2884950
HSP90 mouse monoclonal Antibody Proteintech 60318 RRID:AB_2881429
Anti-Keima-Red mAb MBL international M182-3M RRID:AB_10794910
Neurofilament heavy polypeptide antibody Abcam ab7795 RRID:AB_306084
MAP2 Guinea Pig Polyclonal Antibody Synaptic systems 188004 RRID:AB_2138181
Nogo-A (C-4) Mouse Monoclonal Antibody Santa Cruz sc-271878 RRID:AB_10709573
Calreticulin Rabbit Polyclonal Antibody Proteintech 10292-1-AP RRID:AB_513777
GAPDH (D16H11) XP Rabbit Monoclonal Antibody Cell Signaling Technology 5174 RRID:AB_10622025
Goat anti-mouse Alexa488 Thermo Fisher Scientific A-11001 RRID:AB_2534069
Goat anti-chicken Alexa488 Thermo Fisher Scientific A11039 RRID:AB_2534096
Goat anti-rabbit Alexa568 Thermo Fisher Scientific A-11011 RRID:AB_143157
Goat anti-rabbit Alexa647 Thermo Fisher Scientific A27040 RRID:AB_2536101
Goat anti-guinea pig Alexa488 Thermo Fisher Scientific A-11073 RRID:AB_2534117
Goat anti-guinea pig Alexa647 Thermo Fisher Scientific A-21450 RRID:AB_141882
Bacterial and virus strains
DH5 alpha E. coli competent cells Homemade
T1R E. coli Competent cells Homemade
Chemicals, peptides, and recombinant proteins
DAPI Thermo Fisher Scientific D1306
TMTproâ„¢ 16plex Label Reagent Set Thermo Scientific A44520
Q5 Hot Start High-Fidelity DNA Polymerase New England BioLabs M0493
QuikChange II Site-Directed Mutagenesis Kit Agilent 200523
MiSeq Reagent Nano Kit v2 (300 cycles) Illumina MS-103-1001
Bafilomycin A1 Cayman Chemical 88899-55-2
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) Thermo Fisher Scientific D1306
16% Paraformaldehyde, Electron-Microscopy Grade Electron Microscopy Science 15710
PhosSTOP Sigma-Aldrich T10282
Protease inhibitor cocktail Roche 4906845001
TCEP Gold Biotechnology TCEP2
Formic Acid Sigma-Aldrich 94318
Trypsin Promega V511C
Lys-C Wako Chemicals 129-02541
Urea Sigma U5378
EPPS Sigma-Aldrich E9502
2-Chloroacetamide Sigma-Aldrich C0267
Trypan Blue Stain Thermo Fisher Scientific Wako Chemicals 129-02541w
Bio-Rad Protein Assay Dye Reagent Concentrate Bio-Rad 5000006
Urea Sigma U5378
EPPS Sigma-Aldrich E9502
2-Chloroacetamide Sigma-Aldrich C0267
Empore SPE Disks C18 3M Sigma-Aldrich 66883-U
Pierce Quantitative Colorimetric Peptide Assay Thermo Fisher Scientific 23275
GeneArt Precision gRNA Synthesis Kit Thermo Fisher Scientific A29377
12 Well glass bottom plate with high performance #1.5 cover glass Cellvis P12-1.5H-N
Nunc Cell-Culture Nunclon Delta Treated 6-well Thermo Fisher Scientific 140685
Nunc Cell-Culture Nunclon Delta Treated 12-well Thermo Fisher Scientific 150628
100x21mm Dish, Nunclon Delta Thermo Fisher Scientific 172931
Corning Matrigel Matrix, Growth Factor Reduced Corning 354230
DMEM/F12 Thermo Fisher Scientific 11330057
Neurobasal Thermo Fisher Scientific 21103049
NEAA Life Technologies 11140050
GlutaMax Life Technologies 35050061
N-2 Supplement Thermo Fisher Scientific 17502048
Neurotrophin-3 (NT-3) Peprotech 450-03
Brain-derived neurotrophic factor (BDNF) Peprotech 450-02
B27 Thermo Fisher Scientific 17504001
Y-27632 Dihydrochloride (ROCK inhibitor) PeproTech 1293823
Cultrex 3D Culture Matrix Laminin I R&D Systems 3446-005-01
Accutase StemCell 7920
FGF3 In-house N/A
Insulin Human Sigma-Aldrich I9278-5ML
TGF-beta PeproTech 100-21C
holo-Transferrin human Sigma-Aldrich T0665
Sodium Bicarbonate Sigma-Aldrich S5761-500G
Sodium selenite Sigma-Aldrich S5261-10G
Doxycycline Sigma-Aldrich D9891
Recombinant SpCas9 Zuris et al., 2015; Orderu
Hygromycin B Thermo Fisher Scientific 10687010
UltraPure 0.5M EDTA, pH 8.0 Thermo Fisher Scientific 15575020
GlutaMAX Thermo Fisher Scientific 35050061
Dulbecco’s MEM (DMEM), high glucose, pyruvate GIBCO / Invitrogen 11995
Lipofectamine 3000 Invitrogen L3000008
Experimental models: Cell lines
HEK293T ATCC CRL-1573 CVCL_0045
H9 Wicell WA9 CVCL_9773
Recombinant DNA
pAC150-Keima-RAMP4 This paper Addgene 201929
pAC150-Keima-REEP5 This paper Addgene 201928
pAC150- FAM134C-GFP This paper Addgene 201932
pAC150- TEX264-GFP This paper Addgene 201931
pAC150- TEX264(deltaLIR, F273A)-GFP This paper Addgene 201930
pHAGE-FAM134C-GFP This paper Addgene 201927
pHAGE-TEX264-GFP An et al 2019 Addgene 201925
pHAGE-TEX264(deltaLIR,F273A)-GFP An et al 2019 Addgene 201926
pHAGE-mCherry-LC3B An et al 2019 Addgene 201924
Software and algorithms
Prism GraphPad, V9 https://www.graphpad.com/scientificsoftware/ prism/ SCR_002798
SEQUEST Eng et al., 1994 N/A
Flowjo Flowjo, v10.7 https://www.flowjo.com SCR_008520
Perseus Perseus v1.6.15.0 Tyanova et al. (2016) https://maxquant.org/perseus/ SCR_007358
Fiji ImageJ V.2.0.0 https://imagej.net/software/fiji/ SCR_002285
Imagelab Biorad, v6.0.1 https://www.bio-rad.com/en-us/product/image-lab-software?ID=KRE6P5E8Z&source_wt=imagelabsoftware_surl SCR_014210
Cell Profiler CellProfiler v4.0.6 https://cellprofiler.org/ SCR_007358
Nikon Imaging Software Elements 5.21.3 (Build 1489) SCR_014329
outknocker.org http://www.outknocker.org/outknocker2.htm
ChopChop https://chopchop.cbu.uib.no/ SCR_015723
Instruments
Orbitrap Fusion Lumos Tribrid Mass Spectrometer Thermo Fisher Scientific IQLAAEGAAPFADBMBHQ CR_020562
Orbitrap Eclipse Tribrid Mass Spectrometer Thermo Fisher Scientific FSN04-10000 SCR_020559
Attune NxT Thermo Fisher Scientific SCR_019590
Sony Biotechnology SH800S Cell Sorter Sony Biotechnology SH800S SCR_018066
Neonâ„¢ Transfection System Thermo Fisher Scientific MPK5000 N/A
ChemiDoc MP imaging system BioRad 12003154 SCR_019037
Yokogawa CSU-X1 spinning disk confocal on a Nikon Ti-E inverted microscope Yokogawa/ Nikon
Files
Protocol
Characterizing spatial and temporal properties of ER-phagy receptors
Name
Characterizing spatial and temporal properties of ER-phagy receptors
Version 1
Melissa Hoyer
Melissa HoyerHarvard Medical School
Protocol
Analysis of ER structures in Cultured Induced Neuron axons
Name
Analysis of ER structures in Cultured Induced Neuron axons
Version 1
Melissa Hoyer
Melissa HoyerHarvard Medical School
Protocol
Analysis of ER Flux in Cultured Induced Neurons using Keima ER reporters
Name
ForkAnalysis of ER Flux in Cultured Induced Neurons using Keima ER reporters
Version 1
Melissa Hoyer
Melissa HoyerHarvard Medical School
Protocol
Electroporation of Cas9 protein into human pluripotent stem cells
Name
ForkElectroporation of Cas9 protein into human pluripotent stem cells
Version 1
Melissa Hoyer
Melissa HoyerHarvard Medical School
Protocol
Neural differentiation of AAVS1-TRE3G-NGN2 pluripotent stem cells
Name
ForkNeural differentiation of AAVS1-TRE3G-NGN2 pluripotent stem cells
Version 1
Melissa Hoyer
Melissa HoyerHarvard Medical School
Protocol
Whole-cell proteomics and Analysis by Tandem Mass Tagging-based proteomics
Name
ForkWhole-cell proteomics and Analysis by Tandem Mass Tagging-based proteomics
Version 1
Melissa Hoyer
Melissa HoyerHarvard Medical School
Protocol
Testing ER stress induction in Cultured Induced Neurons via measuring ATF4 protein level or XBP-1 mRNA splicing
Name
Testing ER stress induction in Cultured Induced Neurons via measuring ATF4 protein level or XBP-1 mRNA splicing
Version 1
Melissa Hoyer
Melissa HoyerHarvard Medical School
Protocol
Neural differentiation on EM grids - iNeurons sample preparation for cryo-ET and CLEM
Name
Neural differentiation on EM grids - iNeurons sample preparation for cryo-ET and CLEM
Version 2
Cristina Capitanio
Cristina CapitanioMax Planck Institute of Biochemistry
Protocol
Analysis of nuclei integrity in cultured induced neurons by fluorescence microscopy
Name
Analysis of nuclei integrity in cultured induced neurons by fluorescence microscopy
Version 1
Melissa Hoyer
Melissa HoyerHarvard Medical School
Protocol
Molecular Cloning- Gibson and LR reactions
Name
Molecular Cloning- Gibson and LR reactions
Version c8igzubw
Melissa Hoyer
Melissa HoyerHarvard Medical School
Protocol
Human pluripotent stem cell culture
Name
ForkHuman pluripotent stem cell culture
Version 1
Melissa Hoyer
Melissa HoyerHarvard Medical School
Protocol references
REFERENCES

1. Chino, H. & Mizushima, N. ER-Phagy: Quality and Quantity Control of the Endoplasmic Reticulum by Autophagy. Cold Spring Harb Perspect Biol (2022). https://doi.org:10.1101/cshperspect.a041256

2.Gubas, A. & Dikic, I. ER remodeling via ER-phagy. Mol Cell82, 1492-1500 (2022). https://doi.org:10.1016/j.molcel.2022.02.018

3. Westrate, L. M., Lee, J. E., Prinz, W. A. & Voeltz, G. K. Form follows function: the importance of endoplasmic reticulum shape. Annu Rev Biochem84, 791-811 (2015). https://doi.org:10.1146/annurev-biochem-072711-163501

4. Shibata, Y. et al. Mechanisms determining the morphology of the peripheral ER. Cell143, 774-788 (2010). https://doi.org:10.1016/j.cell.2010.11.007

5. Ozturk, Z., O'Kane, C. J. & Perez-Moreno, J. J. Axonal Endoplasmic Reticulum Dynamics and Its Roles in Neurodegeneration. Front Neurosci14, 48 (2020). https://doi.org:10.3389/fnins.2020.00048

6. Grochowska, K. M., Andres-Alonso, M., Karpova, A. & Kreutz, M. R. The needs of a synapse-How local organelles serve synaptic proteostasis. EMBO J41, e110057 (2022). https://doi.org:10.15252/embj.2021110057

7. Kuijpers, M. et al. Neuronal Autophagy Regulates Presynaptic Neurotransmission by Controlling the Axonal Endoplasmic Reticulum. Neuron109, 299-313 e299 (2021). https://doi.org:10.1016/j.neuron.2020.10.005

8. Khaminets, A. et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature522, 354-358 (2015). https://doi.org:10.1038/nature14498

9. Kurth, I. et al. Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat Genet41, 1179-1181 (2009). https://doi.org:10.1038/ng.464

10. Zhang, H. & Hu, J. Shaping the Endoplasmic Reticulum into a Social Network. Trends Cell Biol26, 934-943 (2016). https://doi.org:10.1016/j.tcb.2016.06.002

11. Park, S. H. & Blackstone, C. Further assembly required: construction and dynamics of the endoplasmic reticulum network. EMBO Rep11, 515-521 (2010). https://doi.org:10.1038/embor.2010.92

12. Grumati, P., Dikic, I. & Stolz, A. ER-phagy at a glance. J Cell Sci131 (2018). https://doi.org:10.1242/jcs.217364

13. Smith, M. D. et al. CCPG1 Is a Non-canonical Autophagy Cargo Receptor Essential for ER-Phagy and Pancreatic ER Proteostasis. Dev Cell44, 217-232 e211 (2018). https://doi.org:10.1016/j.devcel.2017.11.024

14. An, H. et al. TEX264 Is an Endoplasmic Reticulum-Resident ATG8-Interacting Protein Critical for ER Remodeling during Nutrient Stress. Mol Cell74, 891-908 e810 (2019). https://doi.org:10.1016/j.molcel.2019.03.034

15. Chino, H., Hatta, T., Natsume, T. & Mizushima, N. Intrinsically Disordered Protein TEX264 Mediates ER-phagy. Mol Cell74, 909-921 e906 (2019). https://doi.org:10.1016/j.molcel.2019.03.033

16. Fumagalli, F. et al. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat Cell Biol18, 1173-1184 (2016). https://doi.org:10.1038/ncb3423

17. Grumati, P. et al. Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy. Elife6 (2017). https://doi.org:10.7554/eLife.25555

18. Liang, J. R., Lingeman, E., Ahmed, S. & Corn, J. E. Atlastins remodel the endoplasmic reticulum for selective autophagy. J Cell Biol217, 3354-3367 (2018). https://doi.org:10.1083/jcb.201804185

19. Chen, Q. et al. ATL3 Is a Tubular ER-Phagy Receptor for GABARAP-Mediated Selective Autophagy. Curr Biol29, 846-855 e846 (2019). https://doi.org:10.1016/j.cub.2019.01.041

20.Reggio, A. et al. Role of FAM134 paralogues in endoplasmic reticulum remodeling, ER-phagy, and Collagen quality control. EMBO Rep22, e52289 (2021). https://doi.org:10.15252/embr.202052289

21. Hu, J., Prinz, W. A. & Rapoport, T. A. Weaving the web of ER tubules. Cell147, 1226-1231 (2011). https://doi.org:10.1016/j.cell.2011.11.022

22. Shibata, Y., Hu, J., Kozlov, M. M. & Rapoport, T. A. Mechanisms shaping the membranes of cellular organelles. Annu Rev Cell Dev Biol25, 329-354 (2009). https://doi.org:10.1146/annurev.cellbio.042308.113324

23. Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M. & Rapoport, T. A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell124, 573-586 (2006). https://doi.org:10.1016/j.cell.2005.11.047

24. Bhaskara, R. M. et al. Curvature induction and membrane remodeling by FAM134B reticulon homology domain assist selective ER-phagy. Nat Commun10, 2370 (2019). https://doi.org:10.1038/s41467-019-10345-3

25. Mochida, K. et al. Super-assembly of ER-phagy receptor Atg40 induces local ER remodeling at contacts with forming autophagosomal membranes. Nat Commun11, 3306 (2020). https://doi.org:10.1038/s41467-020-17163-y

26.Gonzalez, A. et al. Ubiquitination regulates ER-phagy and remodelling of the endoplasmic reticulum. Naturein press (2023).

27. Chang, C., Jensen, L. E. & Hurley, J. H. Autophagosome biogenesis comes out of the black box. Nat Cell Biol23, 450-456 (2021). https://doi.org:10.1038/s41556-021-00669-y

28. Ghanbarpour, A., Valverde, D. P., Melia, T. J. & Reinisch, K. M. A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis. Proc Natl Acad Sci U S A118 (2021). https://doi.org:10.1073/pnas.2101562118

29. Ordureau, A. et al. Temporal proteomics during neurogenesis reveals large-scale proteome and organelle remodeling via selective autophagy. Mol Cell81, 5082-5098 e5011 (2021). https://doi.org:10.1016/j.molcel.2021.10.001

30. Itzhak, D. N., Tyanova, S., Cox, J. & Borner, G. H. Global, quantitative and dynamic mapping of protein subcellular localization. Elife5 (2016). https://doi.org:10.7554/eLife.16950

31. Wu, Y. et al. Contacts between the endoplasmic reticulum and other membranes in neurons. Proc Natl Acad Sci U S A114, E4859-E4867 (2017). https://doi.org:10.1073/pnas.1701078114

32. Liang, J. R. et al. A Genome-wide ER-phagy Screen Highlights Key Roles of Mitochondrial Metabolism and ER-Resident UFMylation. Cell180, 1160-1177 e1120 (2020). https://doi.org:10.1016/j.cell.2020.02.017

33. Tsuboyama, K. et al. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science354, 1036-1041 (2016). https://doi.org:10.1126/science.aaf6136

34. Wrighton, P. J. et al. Quantitative intravital imaging in zebrafish reveals in vivo dynamics of physiological-stress-induced mitophagy. J Cell Sci134 (2021). https://doi.org:10.1242/jcs.256255

35. Stavoe, A. K. H. & Holzbaur, E. L. F. Autophagy in Neurons. Annu Rev Cell Dev Biol35, 477-500 (2019). https://doi.org:10.1146/annurev-cellbio-100818-125242

36. Evans, C. S. & Holzbaur, E. L. F. Quality Control in Neurons: Mitophagy and Other Selective Autophagy Mechanisms. J Mol Biol432, 240-260 (2020). https://doi.org:10.1016/j.jmb.2019.06.031

37. Roubicek, J., Volavka, J. & Matousek, M. [Electroencephalography in normal population. I. Clinical findings and EEG]. Cesk Psychiatr63, 14-19 (1967).

38. Maday, S. & Holzbaur, E. L. Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev Cell30, 71-85 (2014). https://doi.org:10.1016/j.devcel.2014.06.001

39. Maday, S., Wallace, K. E. & Holzbaur, E. L. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol196, 407-417 (2012). https://doi.org:10.1083/jcb.201106120

40. Zhang, Y. et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron78, 785-798 (2013). https://doi.org:10.1016/j.neuron.2013.05.029

41.An, H., Ordureau, A., Korner, M., Paulo, J. A. & Harper, J. W. Systematic quantitative analysis of ribosome inventory during nutrient stress. Nature583, 303-309 (2020). https://doi.org:10.1038/s41586-020-2446-y

42. Ishii, S. et al. CCPG1 recognizes endoplasmic reticulum luminal proteins for selective ER-phagy. Mol Biol Cell34, ar29 (2023). https://doi.org:10.1091/mbc.E22-09-0432

43. Sun, Z. & Brodsky, J. L. Protein quality control in the secretory pathway. J Cell Biol218, 3171-3187 (2019). https://doi.org:10.1083/jcb.201906047

44. Kumar, N. et al. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol217, 3625-3639 (2018). https://doi.org:10.1083/jcb.201807019

45. Wilkinson, S. Emerging Principles of Selective ER Autophagy. J Mol Biol432, 185-205 (2020). https://doi.org:10.1016/j.jmb.2019.05.012

46. Huttlin, E. L. et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell184, 3022-3040 e3028 (2021). https://doi.org:10.1016/j.cell.2021.04.011

47. Wang, N., Shibata, Y., Paulo, J. A., Gygi, S. P. & Rapoport, T. A. Membrane curvature-generating proteins crucial for autophagosome formation. BioRxiv (2022). https://doi.org:doi.org/10.1101/2022.10.27.514035

48. Wang, N. et al. Mechanism of membrane-curvature generation by ER-tubule shaping proteins. Nat Commun12, 568 (2021). https://doi.org:10.1038/s41467-020-20625-y

49. Di Lorenzo, G. et al. Phosphorylation of FAM134C by CK2 controls starvation-induced ER-phagy. Sci Adv8, eabo1215 (2022). https://doi.org:10.1126/sciadv.abo1215

50. Chino, H. et al. Phosphorylation by casein kinase 2 enhances the interaction between ER-phagy receptor TEX264 and ATG8 proteins. EMBO Rep23, e54801 (2022). https://doi.org:10.15252/embr.202254801

51.Eapen, V. V., Swarup, S., Hoyer, M. J., Paulo, J. A. & Harper, J. W. Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy. Elife10 (2021). https://doi.org:10.7554/eLife.72328

52. McQuin, C. et al. CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol16, e2005970 (2018). https://doi.org:10.1371/journal.pbio.2005970

53. Paulo, J. A. et al. Quantitative mass spectrometry-based multiplexing compares the abundance of 5000 S. cerevisiae proteins across 10 carbon sources. J Proteomics148, 85-93 (2016). https://doi.org:10.1016/j.jprot.2016.07.005

54. Saba, J., Bonneil, E., Pomies, C., Eng, K. & Thibault, P. Enhanced sensitivity in proteomics experiments using FAIMS coupled with a hybrid linear ion trap/Orbitrap mass spectrometer. J Proteome Res8, 3355-3366 (2009). https://doi.org:10.1021/pr801106a

55.Gygi, J. P. et al. Web-Based Search Tool for Visualizing Instrument Performance Using the Triple Knockout (TKO) Proteome Standard. J Proteome Res18, 687-693 (2019). https://doi.org:10.1021/acs.jproteome.8b00737

56.Paulo, J. A., O'Connell, J. D. & Gygi, S. P. A Triple Knockout (TKO) Proteomics Standard for Diagnosing Ion Interference in Isobaric Labeling Experiments. J Am Soc Mass Spectrom27, 1620-1625 (2016). https://doi.org:10.1007/s13361-016-1434-9

57. Schweppe, D. K. et al. Full-Featured, Real-Time Database Searching Platform Enables Fast and Accurate Multiplexed Quantitative Proteomics. J Proteome Res19, 2026-2034 (2020). https://doi.org:10.1021/acs.jproteome.9b00860

58.Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol30, 918-920 (2012). https://doi.org:10.1038/nbt.2377

59.Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom5, 976-989 (1994). https://doi.org:10.1016/1044-0305(94)80016-2

60. Beausoleil, S. A., Villen, J., Gerber, S. A., Rush, J. & Gygi, S. P. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nature biotechnology24, 1285-1292 (2006). https://doi.org:10.1038/nbt1240

61. Huttlin, E. L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell143, 1174-1189 (2010). https://doi.org:10.1016/j.cell.2010.12.001

62. Elias, J. E. & Gygi, S. P. Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol Biol604, 55-71 (2010). https://doi.org:10.1007/978-1-60761-444-9_5

63. Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods4, 207-214 (2007). https://doi.org:10.1038/nmeth1019

64. Plubell, D. L. et al. Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. Mol Cell Proteomics16, 873-890 (2017). https://doi.org:10.1074/mcp.M116.065524

65. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B57, 289-300 (1995).

66. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res47, D442-D450 (2019). https://doi.org:10.1093/nar/gky1106