Flis, A., Piñas Fernandez, A., Zielinski, T., Mengin, V., Sulpice, R., Stratford, K., Hume, A.,
Pokhilko, A., Southern, M. M., Seaton, D. D., McWatters, H. G., Stitt, M., Halliday, K. J.,
& Millar, A. J. (2015). Defining the robust behaviour of the plant clock gene circuit with
absolute RNA timeseries and open infrastructure. Open Biology, 5(10), 150042.
Gould, P. D., Diaz, P., Hogben, C., Kusakina, J., Salem, R., Hartwell, J., & Hall, A. (2009).
Delayed fluorescence as a universal tool for the measurement of circadian rhythms in
higher plants. The Plant Journal, 58(5), 893–901.
Hall, M. P., Unch, J., Binkowski, B. F., Valley, M. P., Butler, B. L., Wood, M. G., Otto, P.,
Zimmerman, K., Vidugiris, G., Machleidt, T., Robers, M. B., Benink, H. A., Eggers, C. T.,
Slater, M. R., Meisenheimer, P. L., Klaubert, D. H., Fan, F., Encell, L. P., & Wood, K. V.
(2012). Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel
Imidazopyrazinone Substrate. ACS Chemical Biology, 7(11), 1848–1857.
Jo, H.-H., Kim, Y. J., Kim, J. K., Foo, M., Somers, D. E., & Kim, P.-J. (2018). Waveforms of
molecular oscillations reveal circadian timekeeping mechanisms. Communications
Millar, A. J., Carre, I. A., Strayer, C. A., Chua, N. H., & Kay, S. A. (1995). Circadian clock
mutants in Arabidopsis identified by luciferase imaging. Science, 267(5201), 1161–1163.
Millar, Andrew J. (2016). The Intracellular Dynamics of Circadian Clocks Reach for the Light of
Ecology and Evolution. Annual Review of Plant Biology, 67(1), 595–618.
Millar, Andrew J., Urquiza, U., Freeman, P. L., Hume, A., Plotkin, G. D., Sorokina, O., Zardilis, A.,
& Zielinski, T. (2019). Practical steps to digital organism models, from laboratory model
species to ‘Crops in silico. Journal of Experimental Botany, 70(9), 2403–2418.
Narumi, R., Shimizu, Y., Ukai-Tadenuma, M., Ode, K. L., Kanda, G. N., Shinohara, Y., Sato, A.,
Matsumoto, K., & Ueda, H. R. (2016). Mass spectrometry-based absolute quantification
reveals rhythmic variation of mouse circadian clock proteins. Proceedings of the
National Academy of Sciences, 113(24), E3461–E3467.
Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., & Ueda, T. (2001).
Cell-free translation reconstituted with purified components. Nature Biotechnology,
Simicevic, J., Schmid, A. W., Gilardoni, P. A., Zoller, B., Raghav, S. K., Krier, I., Gubelmann, C.,
Lisacek, F., Naef, F., Moniatte, M., & Deplancke, B. (2013). Absolute quantification of
transcription factors during cellular differentiation using multiplexed targeted
Ulm, R., Baumann, A., Oravecz, A., Máté, Z., Ádám, É., Oakeley, E. J., Schäfer, E., & Nagy, F.
(2004). Genome-wide analysis of gene expression reveals function of the bZIP
transcription factor HY5 in the UV-B response of Arabidopsis. Proceedings of the
National Academy of Sciences, 101(5), 1397–1402.
Urquiza García, J. M. U. (2018). A Mathematical model in absolute units for the Arabidopsis
Urquiza-García, U., & Millar, A. J. (2019). Expanding the bioluminescent reporter toolkit for plant
science with NanoLUC. Plant Methods, 15(1), 68.
Urquiza-García, U., Molina, N., Halliday, K. J., & Millar, A. J. (2024). Abundant clock proteins
point to missing molecular regulation in the plant circadian clock. bioRxiv.