

SureSelect XT HS2 DNA System

Automated using Agilent NGS Bravo Option A

DNA Library Preparation, Pre-Capture Pooling (optional), and Target Enrichment for the Illumina Platform

Protocol

Version A0, March 2022

SureSelect platform manufactured with Agilent SurePrint technology. For Research Use Only. Not for use in diagnostic procedures.

Notices

© Agilent Technologies, Inc. 2022

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

G9985-90020

Edition

Version A0, March 2022

Agilent Technologies, Inc. 5301 Stevens Creek Blvd Santa Clara, CA 95051 USA

Acknowledgment

Oligonucleotide sequences © 2006, 2008, and 2011 Illumina, Inc. All rights reserved. Only for use with the Illumina sequencer systems and associated assays.

Technical Support

For US and Canada

Call (800) 227-9770 (option 3,4,4) Or send an e-mail to: ngs.support@agilent.com

For all other regions

Agilent's world-wide Sales and Support Center contact details for your location can be obtained at www.agilent.com/en/contact-us/page.

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

U.S. Government Restricted Rights. Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data -Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).

Notice to Purchaser

This product is provided under an agreement between Bio-Rad Laboratories and Agilent Technologies Inc., and the manufacture, use, sale or import of this product is subject to U.S. Pat. No. 6,627,424 and EP Pat. No.1 283 875 81, owned by Bio-Rad Laboratories, Inc. Purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in PCR (but not including real-time PCR) in the Research Field (including all Applied Research Fields, including but not limited to forensics, animal testing, and food testing) and in real-time PCR in the Diagnostics and Prognostics Fields. No rights are granted for use of this product for real-time PCR in the Research Field, including all Applied Research Fields (including but not limited to forensics, animal testing and food testing).

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

In this Guide...

This guide provides an optimized protocol for preparation of target-enriched Illumina paired-end multiplexed sequencing libraries using SureSelect XT HS2 Reagent Kits. Sample processing steps are automated using the Agilent NGS Bravo Option A.

1 Before You Begin

This chapter contains information that you should read and understand before you start an experiment.

2 Using the Agilent NGS Workstation for SureSelect Target Enrichment

This chapter contains an orientation to the Agilent NGS Workstation, an overview of workflow, and considerations for designing experiments for automated processing.

4 Sample Preparation

This chapter describes the steps to prepare indexed, molecular-barcoded gDNA sequencing libraries for target enrichment.

5 Hybridization

This chapter describes the steps to hybridize and capture the prepared DNA library using a SureSelect or ClearSeq Probe Capture Library.

6 Post-Capture Sample Processing for Multiplexed Sequencing

This chapter describes the steps for post-capture amplification and sequencing sample preparation guidelines.

7 Appendix: Using FFPE-derived DNA Samples

This chapter describes the protocol modifications for gDNA isolated from FFPE samples.

8 Reference

This chapter contains reference information, including kit contents, index sequences, and a troubleshooting guide.

1 Before You Begin

Procedural Notes 10 Safety Notes 10 Materials Required 11

Optional Materials 17

2 Using the Agilent NGS Bravo Option A for SureSelect Target Enrichment

About the NGS Bravo Option A 20 About the Bravo Platform 20 VWorks Automation Control Software 22

Overview of the SureSelect Target Enrichment Procedure27Workflow Modulations29Automation Protocols used in the Workflow30

Experimental Setup Considerations for Automated Runs 32
 Considerations for Placement of gDNA Samples in 96-well Plates for Automated Processing 33
 Considerations for Equipment Setup 33
 PCR Plate Type Considerations 34

3 Preparation of AMPure XP Bead Plates

- Step 1. Prepare the bead plate to be used for library preparation 36
- Step 2. Prepare the bead plate to be used for Pre-Capture Purification 38
- Step 3. Prepare the bead plate to be used for concentration of pooled DNA (pre-capture pooling workflow only) **40**
- Step 4. Prepare the bead plate to be used for Post-Capture Purification 42

4 Sample Preparation

Step 1. Prepare and analyze quality of genomic DNA samples 46
Preparation of high-quality gDNA from fresh biological samples 46
Preparation and qualification of gDNA from FFPE samples 46
Step 2. Fragment the DNA 48
Method 1: Prepare fragmented DNA by enzymatic fragmentation 48
Method 2. Prepare fragmented DNA by mechanical shearing 54

Step 3. Prepare adaptor-ligated libraries 57

Step 4. Purify adaptor-ligated DNA using AMPure XP beads 62

Step 5. Amplify adaptor-ligated libraries 64

- Step 6. Purify amplified DNA using AMPure XP beads **70**
- Step 7. Assess Library DNA quantity and quality 73

Option 1: Analysis using an Agilent 4200 TapeStation Instrument and D1000 ScreenTape **73** Option 2: Analysis using an equivalent platform (non-automated) **77**

5 Hybridization

- Step 1. Prepare DNA for Hybridization 80
 - Option 1: Single-plex hybridization 80
 - Option 2: Multi-plex hybridization 83

Step 2. Hybridize the gDNA library or library pool and probe 93

- Step 3. Capture the hybridized DNA 103
- Step 4. Wash the captured DNA 107

6 Post-Capture Sample Processing for Multiplexed Sequencing

- Step 1. Amplify the captured libraries 112
- Step 2. Purify the amplified indexed libraries using AMPure XP beads **117**
- Step 3. Assess sequencing library DNA quantity and quality **119**

Option 1: Analysis using the Agilent 4200 TapeStation and High Sensitivity D1000 ScreenTape **119** Option 2: Analysis using an equivalent platform (non-automated) **124**

Step 4. Pool samples for multiplexed sequencing (optional) 125

Step 5. Prepare sequencing samples 129

Step 6. Do the sequencing run and analyze the data 131
HiSeq/NextSeq/NovaSeq platform sequencing run setup guidelines 131
MiSeq platform sequencing run setup guidelines 132
Set up a custom Sample Sheet: 132
Editing the Sample Sheet to include SureSelect XT HS2 dual indexes 133

Sequence analysis resources 135

7 Appendix: Using FFPE-derived DNA Samples

Protocol modifications for FFPE Samples 138 Methods for FFPE Sample Qualification 139 Sequencing Output Recommendations for FFPE Samples 140

8 Reference

Kit Contents 142

SureSelect XT HS2 Index Primer Pair Information 144

Index Primer Pair Plate Maps 152

Quick Reference Tables for Master Mixes and Source Plates 154

Quick Reference Tables for Other Reagent Volumes **160**

Troubleshooting Guide 161

SureSelect XT HS2 DNA System Protocol

1 Before You Begin

Procedural Notes10Safety Notes10Materials Required11Optional Materials17

Make sure you have the most current protocol. Go to **www.agilent.com** and search for G9985-90020.

Make sure you read and understand the information in this chapter and have the necessary equipment and reagents listed before you start an experiment.

NOTE

This protocol describes automated DNA sample processing for SureSelect XT HS2 Target Enrichment using the Agilent NGS Bravo Option A.

For automated sample processing procedures using Agilent NGS Workstation Option B, see publication G9985-90010.

For non-automated sample processing procedures, see publication G9983-90000 (for post-capture pooling workflow) or G9985-90000 (for pre-capture pooling workflow).

NOTE

Agilent guarantees performance and provides technical support for the SureSelect reagents required for this workflow only when used as directed in this Protocol.

Procedural Notes

- Certain protocol steps require the rapid transfer of sample plates between the Bravo deck and a thermal cycler. Locate your thermal cycler in close proximity to the Agilent NGS Bravo to allow rapid and efficient plate transfer.
- If your thermal cycler is compatible with the use of compression pads, add a compression pad whenever you load a plate that was sealed with the PlateLoc thermal microplate sealer. The pad improves contact between the plate and the heated lid of the thermal cycler.
- Use best-practices to prevent PCR product contamination of samples throughout the workflow:
 - 1 Assign separate pre-PCR and post-PCR work areas and use dedicated supplies and reagents in each area. In particular, never use materials designated to post-PCR work for pre-PCR segments of the workflow. Always use dedicated pre-PCR pipettors with nuclease-free aerosol-resistant tips to pipette dedicated pre-PCR solutions.
 - **2** Maintain clean work areas. Clean pre-PCR surfaces that pose the highest risk of contamination daily using a 10% bleach solution.
 - **3** Wear powder-free gloves. Use good laboratory hygiene, including changing gloves after contact with any potentially-contaminated surfaces.
- In general, follow Biosafety Level 1 (BSL1) safety rules.
- Possible stopping points, where samples may be stored at -20°C, are marked in the protocol. Do not subject the samples to multiple freeze/thaw cycles.

Safety Notes

CAUTION

Wear appropriate personal protective equipment (PPE) when working in the laboratory.

Materials Required

Materials required to complete the SureSelect XT HS2 automation protocol will vary based on the following considerations:

- DNA sample type: high-quality gDNA derived from fresh samples vs. FFPE-derived gDNA samples
- DNA fragmentation method used in workflow: enzymatic fragmentation vs. mechanical (Covaris-mediated) shearing
- Pooling of DNA libraries for multiplexed sequencing: Pre-capture pooling vs. post-capture pooling

To determine the materials required for your unique needs, refer to the tables provided in this chapter.

- See Table 1 and Table 2 for the reagents and equipment required for all sample types and workflows.
- See Table 3 for the SureSelect XT HS2 DNA Reagent Kits. The table includes kits that are suitable for workflows with pre-capture pooling of DNA libraries and kits suitable for workflows with post-capture pooling of DNA libraries.
- See **Table 4** for compatible probes. The table distinguishes between probes suitable for workflows with pre-capture pooling of DNA libraries and probes suitable for workflows with post-capture pooling of DNA libraries.
- See Table 5 for additional materials needed to complete the protocols using the selected DNA sample type and fragmentation method.
- See Table 6 for a list of optional materials.

Table 1 Required Reagents--All Sample and Workflow Types

Description	Vendor and part number
AMPure XP Kit*	Beckman Coulter Genomics
60 mL	p/n A63881
450 mL	p/n A63882
Dynabeads MyOne Streptavidin T1*	Thermo Fisher Scientific
10 mL	p/n 65602
50 mL	p/n 65604D
1X Low TE Buffer (10 mM Tris-HCl, pH 7.5-8.0, 0.1 mM EDTA)	Thermo Fisher Scientific p/n 12090-015, or equivalent
100% Ethanol (Ethyl Alcohol, 200 proof)	Millipore p/n EX0276
Qubit BR dsDNA Assay Kit	Thermo Fisher Scientific
100 assays	p/n Q32850
500 assays	p/n Q32853
Nuclease-free Water (not DEPC-treated)	Thermo Fisher Scientific p/n AM9930

* Separate purchase **not** required when using the SureSelect XT HS2 DNA Reagent Kits that include SureSelect DNA AMPure XP Beads and SureSelect Streptavidin Beads (Agilent p/n G9984A, G9984B, G9984C, or G9984D).

Table 2 Required Equipment--All Sample and Workflow Types

Description	Vendor and Part Number		
Agilent NGS Bravo Option A Contact Agilent Automation Solutions for more information: Customerservice.automation@agilent.com	Agilent p/n G5573AA (VWorks software version 13.1.0.1366)		
Agilent PlateLoc Thermal Microplate Sealer	Agilent p/n G5585HA or G5585BA		
Robotic Pipetting Tips (Sterile, Filtered, 250 μ L)	Agilent p/n 19477-022		
Thermal cycler and accessories (including compression pads, if compatible)	Various suppliers Important: Not all PCR plate types are supported for use in the VWorks automation protocols for the Agilent NGS Bravo. Select a thermal cycler that is compatible with one of the supported PCR plate types. See supported plate types in the listing below.		
PCR plates compatible with the Agilent NGS Bravo and associated VWorks automation protocols	 Only the following PCR plates are supported: 96 ABI PCR half-skirted plates (MicroAmp Optical plates), Thermore Fisher Scientific p/n N8010560 96 Agilent semi-skirted PCR plate, Agilent p/n 401334 96 Eppendorf Twin.tec half-skirted PCR plates, Eppendorf p/n 951020303 96 Eppendorf Twin.tec PCR plates (full-skirted), Eppendorf p/n 951020401 or 951020619 96 Armadillo PCR plates (full-skirted), Thermo Fisher Scientific p/n AB2396 		
Eppendorf twin.tec full-skirted 96-well PCR plates, or Armadillo PCR plates, 96-wells (full-skirted)	Eppendorf p/n 951020401 or 951020619 Thermo Fisher Scientific p/n AB2396		
Agilent Reservoirs, Single cavity, 96 pyramids base geometry, 19 mm height – used when Bravo setup calls for Agilent Shallow Well Reservoir	Agilent p/n 201254-100		
Agilent Reservoirs, Single cavity, 96 pyramids base geometry, 44mm height – used when Bravo setup calls for Agilent Deep Well Reservoir	Agilent p/n 201244-100		
Agilent Storage/Reaction Microplates, 96 wells, 1 mL/round well – used when Bravo setup calls for Agilent DeepWell Plate or Agilent DW Plate	Agilent p/n 203426-100		
Agilent Storage/Reaction Microplates, 96 wells, 2 mL/square well – used when Bravo setup calls for Waste Plate (Agilent 2 mL Square Well)	Agilent p/n 201240-100		
Nucleic acid surface decontamination wipes	DNA Away Surface Decontaminant Wipes, Thermo Scientific p/n 7008, or equivalent		
Qubit Fluorometer	Thermo Fisher Scientific p/n Q33238		
Qubit Assay Tubes	Thermo Fisher Scientific p/n Q32856		
DNA LoBind Tubes, 1.5-mL PCR clean, 250 pieces	Eppendorf p/n 022431021 or equivalent		
Vicrocentrifuge	Eppendorf microcentrifuge, model 5417C or equivalent		
Plate centrifuge	Labnet International MPS1000 Mini Plate Spinner, p/n C1000 or equivalent		
Magnetic separator	DynaMag-50 magnet, Thermo Fisher Scientific p/n 123-02D or equivalent		

Table 2 Required Equipment--All Sample and Workflow Types (continued)

Description	/endor and Part Number	
Multichannel pipette	Rainin Pipet-Lite Multi Pipette or equivalent	
Single channel pipettes (10-, 20-, 200-, and 1000-µL capacity)	Rainin Pipet-Lite Pipettes or equivalent	
Sterile, nuclease-free aerosol barrier pipette tips	general laboratory supplier	
Vortex mixer	general laboratory supplier	
Ice bucket	general laboratory supplier	
Powder-free gloves	general laboratory supplier	
DNA Analysis Platform and Consumables [*] Agilent 2100 Bioanalyzer Instrument Agilent 2100 Expert SW Laptop Bundle (optional) DNA 1000 Kit High Sensitivity DNA Kit OR Agilent 4200 TapeStation [†] 96-well sample plates 96-well plate foil seals 8-well tube strips 8-well tube strip caps D1000 ScreenTape D1000 Reagents D1000 Sample Buffer [‡] High Sensitivity D1000 ScreenTape High Sensitivity D1000 Reagents High Sensitivity D1000 Sample Buffer [‡]	Agilent p/n G2939BA Agilent p/n G2953CA Agilent p/n 5067-1504 Agilent p/n 5067-4626 Agilent p/n 5042-8502 Agilent p/n 5067-5154 Agilent p/n 401428 Agilent p/n 401425 Agilent p/n 5067-5582 Agilent p/n 5067-5583 Agilent p/n 5067-5584 Agilent p/n 5067-5585 Agilent p/n 5067-5585 Agilent p/n 5067-5603	

* DNA samples may also be analyzed using the Agilent 5200 Fragment Analyzer, p/n M5310AA, and associated NGS Fragment Kits (e.g., DNF-473-0500 and DNF-474-0500). Follow the assay instructions provided for each NGS Fragment Kit.

+ DNA samples may also be analyzed using the Agilent 4150 TapeStation, p/n G2992AA. ScreenTape devices plus their associated reagent kits, and the 8-well strip tubes and caps listed in this table are compatible with both platforms.

[‡] The additional TapeStation assay sample buffers, p/n 5067-5602 and 5067-5603, are required only when sample qualification is performed using VWorks automation protocols TS_D1000 and TS_HighSensitivity_D1000.

Table 3 Agilent SureSelect XT HS2 DNA Reagent Kits

Description	Agilent Part Number
For Pre-Capture Pooling	
SureSelect XT HS2 DNA Library Preparation Kit for ILM (Pre PCR), 96 Reactions	G9985A (with Index Pairs 1–96) G9985B (with Index Pairs 97–192) G9985C (with Index Pairs 193–288) G9985D (with Index Pairs 289–384)
AND SureSelect XT HS2 DNA Target Enrichment Kit (Post PCR), 12 Hybs [*]	G9987A
For Post-Capture Pooling	
SureSelect XT HS2 DNA Reagent Kit, 96 Reactions contains reagents for library preparation and target enrichment	G9983A (with Index Pairs 1–96) G9983B (with Index Pairs 97–192) G9983C (with Index Pairs 193–288) G9983D (with Index Pairs 289–384)
OR	
SureSelect XT HS2 DNA Reagent Kit with AMPure XP/Streptavidin Beads, 96 Reactions contains reagents for library preparation and target enrichment, and includes the necessary AMPure XP and Streptavidin beads	G9984A (with Index Pairs 1–96) G9984B (with Index Pairs 97–192) G9984C (with Index Pairs 193–288) G9984D (with Index Pairs 289–384)

* The 12-Hyb Target Enrichment Kit provides sufficient reagents for 12 hybridization reactions of pre-capture pooled samples, which corresponds to 1.5 columns (i.e., 12 wells) on a 96-well plate. The hybridization protocol cannot process partial columns. Purchase two 12-Hyb Target Enrichment Kits to run 3 full columns (i.e., 24 wells) of hybridization reactions. If your workflow calls for hybridization of 96 pooled samples, then purchase eight of the 12-Hyb Target Enrichment Kits. Pre-capture pooling of samples can use the configuration of either 8 samples/pool or 16 samples/pool.

robe Capture Library	Ordering Information		
Custom Probes [*]			
For Pre-Capture Pooling	SSEL PreCap Custom Tier1 1–499 kb (6 Hybs [†] or 30 Hybs [‡])	Please visit the SureDesign	
	SSEL PreCap Custom Tier2 0.5 –2.9 Mb (6 Hybs [†] or 30 Hybs [‡])	 website to design Custom SureSelect probes and obtair 	
	SSEL PreCap Custom Tier3 3 –5.9 Mb (6 Hybs [†] or 30 Hybs [‡])	ordering information. Contac	
	SSEL PreCap Custom Tier4 6 –11.9 Mb (6 Hybs [†] or 30 Hybs [‡])	the SureSelect support team (see page 2) or your local representative if you need assistance.	
	SSEL PreCap Custom Tier5 12–24 Mb (6 Hybs [†] or 30 Hybs [‡])		
For Post-Capture Pooling	SureSelect Custom Tier1 1–499 kb		
	SureSelect Custom Tier2 0.5–2.9 Mb		
	SureSelect Custom Tier3 3–5.9 Mb		
	SureSelect Custom Tier4 6–11.9 Mb		
	SureSelect Custom Tier5 12-24 Mb	_	
Pre-designed Probes			
For Pre-Capture Pooling	SureSelect XT HS PreCap Human All Exon V8 (12 Hybs)**	Agilent p/n 5191-6878	
	SureSelect XT HS PreCap Human All Exon V8+UTR (12 Hybs)**	Agilent p/n 5191-7406	
	SureSelect XT HS PreCap Human All Exon V8+NCV (12 Hybs)**	Agilent p/n 5191-7412	
	SureSelect Pre-Capture Pooling Human All Exon V7 (12 Hybs)**	Agilent p/n 5191-5735	
	SureSelect XT2 Clinical Research Exome V2 (12 Hybs)**	Agilent p/n 5190-9501	
	SureSelect XT2 Mouse All Exon (12 Hybs)**	Agilent p/n 5190-4682	
	ClearSeq Inherited Disease XT2 (12 Hybs)**		
	ClearSeq Comprehensive Cancer XT2 (6 Hybs) [†]	Agilent p/n 5190-8018	
For Post-Capture Pooling	SureSelect XT HS Human All Exon V8	Agilent p/n 5191-6875	
	SureSelect XT HS Human All Exon V8+UTR	Agilent p/n 5191-7403	
	SureSelect XT HS Human All Exon V8+NCV	Agilent p/n 5191-7409	
	SSel XT HS and XT Low Input Human All Exon V7, 96 Reactions	Agilent p/n 5191-4029	
	SureSelect XT Clinical Research Exome V2, 96 Reactions	Agilent p/n 5190-9492	
	SureSelect XT Mouse All Exon, 96 Reactions	Agilent p/n 5190-4642	
	ClearSeq Comprehensive Cancer XT, 96 Reactions	Agilent p/n 5190-8012	
	ClearSeq Inherited Disease XT, 96 Reactions	Agilent p/n 5190-7519	
Pre-designed Probes custo	mized with additional Plus custom content		
For Pre-Capture Pooling	SureSelect XT2 Clinical Research Exome V2 Plus 1 (12 Hybs)**	Please visit the SureDesign	
	SureSelect XT2 Clinical Research Exome V2 Plus 2 (12 Hybs)**	website to design the	
	ClearSeq Comprehensive Cancer Plus XT2 (6 Hybs) [†]	 customized Plus content and obtain ordering information. 	
	ClearSeq Inherited Disease Plus XT2 (12 Hybs)**	Contact the SureSelect	
For Post-Capture Pooling	SSel XT HS and XT Low Input Human All Exon V7 Plus 1	 support team (see page 2) or your local representative if you need assistance. 	
	SSel XT HS and XT Low Input Human All Exon V7 Plus 2		
	SureSelect XT Clinical Research Exome V2 Plus 1		
	SureSelect XT Clinical Research Exome V2 Plus 2		
	ClearSeq Comprehensive Cancer Plus XT		
	ClearSeq Inherited Disease Plus XT	_	

Table 4 Compatible Probes based on Pooling Method

- * Custom Probes designed August 2020 or later are produced using an updated manufacturing process; design-size Tier is shown on labeling for these products. Custom Probes designed and ordered prior to August 2020 may be reordered, with these probes produced using the legacy manufacturing process; design-size Tier is not shown on labeling for the legacy-process products. Custom Probes of both types use the same optimized target enrichment protocols detailed in this publication.
- + The 6-Hyb Probes support target enrichment for 96 samples pooled using the configuration recommended for the included designs of 16 samples/pool (for 6 hybs × 16 samples/hyb). Contains enough reagent for 6 hybridization reactions using the run setup on **page 96**. The hybridization protocol can only process columns in which all 8 wells contain a hybridization reaction. In order to have enough reagent to run 3 full columns (i.e., 24 wells), you must purchase 4 units of the 6-Hyb Probe.
- ‡ The 30-Hyb Probes support target enrichment for 480 samples pooled using the configuration recommended for the included designs of 16 samples/pool (for 30 hybs × 16 samples/hyb). Contains enough reagent for 30 hybridization reactions using the run setup on page 96. The hybridization protocol can only process columns in which all 8 wells contain a hybridization reaction.
- ** The 12-Hyb Probes support target enrichment for 96 samples pooled using the configuration recommended for the included designs of 8 samples/pool (for 12 hybs × 8 samples/hyb). Contains enough reagent for 6 hybridization reactions using the run setup on page 96. The hybridization protocol can only process columns in which all 8 wells contain a hybridization reaction. In order to have enough reagent to run 3 full columns (i.e., 24 wells), you must purchase 2 units of the 12-Hyb Probe.

Table 5 Additional Required Materials based on DNA Sample Type/Fragmentation Method

Vendor and Part Number
or FFPE DNA sample preparation)
Qiagen p/n 51304 p/n 51306
n-quality DNA sample preparation)
Qiagen p/n 56404
Qiagen p/n 19093
Agilent p/n G9700A p/n G9700B Agilent p/n 5067-5365 p/n 5067-5366
for workflows with mechanical shearing)
Agilent p/n 5191-6764
workflows with enzymatic fragmentation)
Covaris model E220
Covaris p/n 520078

Optional Materials

Description	Vendor and part number
High-quality gDNA purification system, for example:	
QIAamp DNA Mini Kit	Qiagen
50 Samples	p/n 51304
250 Samples	p/n 51306
Tween 20	Sigma-Aldrich p/n P9416-50ML

Table 6 Supplier Information for Optional Materials

2

Using the Agilent NGS Bravo Option A for SureSelect Target Enrichment

About the NGS Bravo Option A 20 Overview of the SureSelect Target Enrichment Procedure 27 Experimental Setup Considerations for Automated Runs 32

This chapter contains an orientation to the Agilent NGS Bravo Option A, an overview of the SureSelect XT HS2 target enrichment protocol, and considerations for designing SureSelect XT HS2 experiments for automated processing using the Agilent NGS Bravo Option A.

About the NGS Bravo Option A

CAUTION

Before you begin, make sure that you have read and understand operating, maintenance and safety instructions for using the Bravo platform and additional devices and software. Refer to the user guides listed in **Table 7**.

Review the user guides listed in **Table 7** (available at Agilent.com) to become familiar with the general features and operation of the automation components. Instructions for using the Bravo platform and other automation components in the SureSelect XT HS2Target Enrichment workflow are detailed in this user guide.

Table 7	Agilent NGS Bravo User Guide reference information
---------	--

Device	User Guide part number
Bravo Platform	SD-V1000376 (previously G5562-90000)
VWorks Software (version 13.1.0.1366)	G5415-90068
PlateLoc Thermal Microplate Sealer	G5585-90010

About the Bravo Platform

The Bravo platform is a versatile liquid handler with a nine plate-location platform deck, suitable for handling 96-well, 384-well, and 1536-well plates. The Bravo platform is controlled by the VWorks Automation Control software. Fitted with a choice of three interchangeable disposable-tip pipette heads, it accurately dispenses fluids from $0.3 \,\mu$ L to $250 \,\mu$ L.

Bravo Platform Deck

The protocols in the following sections include instructions for placing plates and reagent reservoirs on specific Bravo deck locations. Use **Figure 1** to familiarize yourself with the location numbering convention on the Bravo platform deck.

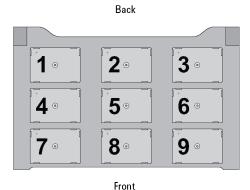
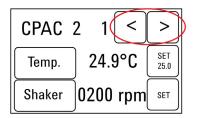
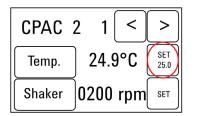


Figure 1 Bravo platform deck

Setting the Temperature of Bravo Deck Heat Blocks

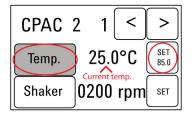

Bravo deck positions 4 and 6 are equipped with Inheco heat blocks, used to incubate sample plates at defined temperatures during the run. Runs that include high- (85°C) or low- (4°C) temperature incubation steps may be expedited by pre-setting the temperature of the affected block before starting the run.

Bravo deck heat block temperatures may be changed using the Inheco Multi TEC Control device touchscreen as described in the steps below. See **Table 8** for designations of the heat block-containing Bravo deck positions on the Multi TEC control device.


Table 8 Inheco Multi TEC Control touchscreen designations

Bravo Deck Position	Designation on Inheco Multi TEC Control Screen	
4	CPAC 2 1	
6	CPAC 2 2	

1 Using the arrow buttons, select the appropriate block (CPAC 2 block 1 or CPAC 2 block 2).


2 To set the temperature of the selected block, press the SET button.

3 Using the numeral pad, enter the desired temperature. The entered temperature appears in the top, left rectangle. Once the correct temperature is displayed, press the rectangle to enter the temperature.

085.0 °C – back			back	
1	2	3	4	5
6	7	8	9	0

4 Press the Temp button until the new temperature is displayed on the SET button and until the Temp button is darkened, indicating that the selected heat block is heating or cooling to the new temperature setting. The current temperature of the block is indicated in the center of the display.

Setting the Temperature of Bravo Deck Position 9 Using the ThermoCube Device

Bravo deck position 9 is equipped with a ThermoCube thermoelectric temperature control system, used to incubate components at a defined temperature during the run. During protocols that require temperature control at position 9, you will be instructed to start and set the temperature of the ThermoCube device before starting the run.

ThermoCube temperature settings are modified using the control panel (LCD display screen and four input buttons) on the front panel of the device using the following steps.

- 1 Turn on the ThermoCube and wait for the LCD screen to display **TEMP**.
- 2 Press the UP or DOWN button to change SET TEMP 1 to the required set point.
- 3 Press the START button.

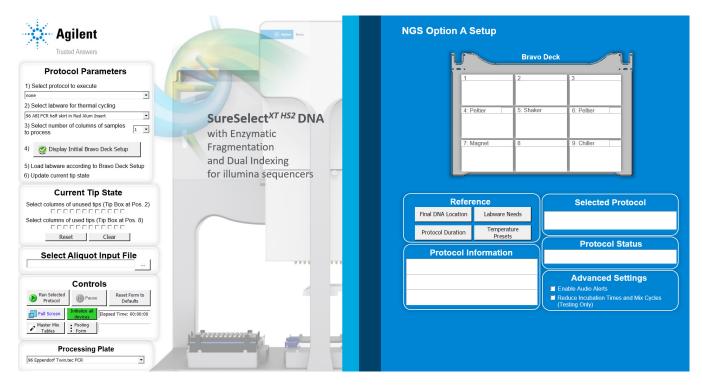
The ThermoCube then initiates temperature control of Bravo deck position 9 at the displayed set point.

VWorks Automation Control Software

VWorks software, included with your Agilent NGS Bravo Option A, allows you to control the integrated devices using a PC. The Agilent NGS Bravo Option A is preloaded with VWorks software containing all of the necessary SureSelect system liquid handling protocols. General instructions for starting up the VWorks software and the included protocols is provided below. Each time a specific VWorks protocol is used in the SureSelect procedure, any settings required for that protocol are included in the relevant section of this manual.

NOTE

The instructions in this manual are compatible with VWorks software version 13.1.0.1366.


If you have questions about VWorks version compatibility, please contact service.automation@agilent.com.

Logging in to the VWorks software

- 1 Double-click the VWorks icon or the XT_HS2_ILM_v.A1.0.2.VWForm shortcut on the Windows desktop to start the VWorks software.
- 2 If User Authentication dialog is not visible, click **Log in** on the VWorks window toolbar.
- **3** In the User Authentication dialog, type your VWorks user name and password, and click **OK**. (If no user account is set up, contact the administrator.)

Using the XT_HS2_ILM_v.A1.0.2.VWForm to setup and start a run

Use the VWorks form XT_HS2_ILM_v.A1.0.2.VWForm, shown below, to set up and start each SureSelect automation protocol.

- 1 Open the form using the XT_HS2_ILM_v.A1.0.2.VWForm shortcut on your desktop.
- 2 Verify that the **Processing Plate** selection is set to the correct plate type.

The processing plate is either a 96-well Eppendorf twin.tec plate (Eppendorf p/n 951020401 or 951020619) or a 96-well Armadillo plate (Thermo Fisher Scientific p/n AB2396).

CAUTION

Indicating the correct processing plate type that will be used in the assay is critical for accurate pipetting and to avoid damage to the Bravo instrument.

- **3** Use the drop-down menus on the form to select the appropriate SureSelect workflow step and other Parameters for the run.
- 4 Once all run parameters have been specified on the form, click **Display Initial Bravo Deck Setup**.

🥑 Display Initial Bravo Deck Setup

5 The form will then display the NGS Bravo deck configuration needed for the specified run parameters.

Load the Bravo Deck with labware and reagents as specified in the **Bravo Deck** region of the form.

Review the temperature preset and in-run labware transfer information shown in the **Protocol Information** section of the form. Set the temperature of Bravo Deck positions as needed.

6 Verify that the **Current Tip State** indicator on the form (shown below) matches the configuration of unused tips in the tip box at Bravo Deck position 2.

For a fresh tip box, containing 12 columns of tips, all positions of the **Current Tip State** unused tip indicator (top portion, Box 2) should be selected, as shown below. Clicking **Reset** selects all columns for position 2.

Current Tip State		
Select columns of unused tips (Tip Box at Pos. 2)		
Select columns of used tips (Tip Box at Pos. 8)		
Reset Clear		

Also verify that the used tip indicator (bottom portion, Box 8) matches the configuration of used tips in the tip box at Bravo Deck position 8.

For an empty tip box, all positions of the **Current Tip State** used tip indicator (bottom portion, Box 8) should be cleared, as shown above. Clicking **Reset** clears all columns for position 8.

NOTE

It is important that the **Current Tip State** indicator matches the configuration of tips present at Bravo Deck positions 2 and 8 when initiating the run. Tips that are inappropriately loaded onto the Bravo platform pipette head, or tips missing from the pipette head, will interfere with automated processing steps.

You can use partial tip boxes for NGS Bravo Option A automation protocols, as long as positions of available tips are accurately indicated during run setup.

7 After verifying that the NGS Bravo has been set up correctly, click **Run Selected Protocol**.

Error messages encountered at start of run

After starting the run, you may see the error messages displayed below. When encountered, make the indicated selections and proceed with the run. Encountering either or both of these error messages is not indicative of a problem with the NGS Bravo or your run setup.

1 If you encounter the G-axis error message shown below, select **Ignore and Continue, leaving** device in current state.

Bravo - 1 Error
There appears to be a plate present in, or in front of the gripper's plate presence sensor. - Choose "Retry" to check the plate presence sensor again. - Choose "Ignore" to continue to home the G axis. Please note that any plate currently held by the gripper will be dropped. - Choose "Abort" to cancel initialization.
T
Diagnostics
Retry
Ignore and Continue, leaving device in current state
Abort
Add to Error Library


2 If you encounter the W-axis error message shown below, select **Retry**.

Diagnostics	Please verify that it is safe t aspirate/dispense axis). If t may want to manually home over a waste position, - Choose "Retry" to continu - Choose "Retry" to continu - Choose "Ignore" to leave - Choose "Abort" to cancel	here is flui the W-axis ue homing t the W-axis	d in the tips you in diagnostics he W-axis. unhomed.	1	1
Ignore and Continue, leaving device in current state <u>A</u> bort	Retry Ignore and Continue, le	aving devic	e in current sta	te	

Verifying the Simulation setting

VWorks software may be run in simulation mode, during which commands entered on screen are not completed by the NGS Bravo. If NGS Bravo devices do not respond when you start a run, verify the simulation mode status in VWorks using the following steps.

1 Verify that **Simulation is off** is displayed on the status indicator (accessible by clicking **View > Control Toolbar**).

2 If the indicator displays **Simulation is on**, click the status indicator button to turn off the simulation mode.

If you cannot see the toolbar above the VWorks form, click the **Full Screen** button to exit full screen mode. If the toolbar is still not visible, right-click on the form and then select **Control Toolbar** from the menu.

Overview of the SureSelect Target Enrichment Procedure

Figure 2 summarizes the SureSelect XT HS2 library preparation and target enrichment workflow for DNA samples to be sequenced using the Illumina paired-read sequencing platform. For each sample to be sequenced, individual library preparations, hybridizations, and captures are performed.

Agilent offers four different plates of index pairs for use with the SureSelect XT HS2 DNA library preparation reagents to allow for multiplexed sequencing (refer to **"Index Primer Pair Plate Maps"** on page 152). Depending on the SureSelect XT HS2 DNA Reagent Kit(s) used in the protocol, you can pool samples for multiplexed sequencing either prior to hybridization with the Probe (i.e., pre-capture pooling) or after hybridization and subsequent PCR amplification of the captured libraries (i.e., post-capture pooling).

See **Table 10** for a summary of the VWorks protocols used during the workflow. Then, see **Preparation of AMPure XP Bead Plates**, **Sample Preparation**, **Hybridization**, and **Post-Capture Sample Processing for Multiplexed Sequencing** chapters for complete instructions for use of the VWorks protocols for sample processing.

The SureSelect XT HS2 DNA library preparation protocol is compatible with both high-quality gDNA prepared from fresh or fresh frozen samples and lower-quality DNA prepared from FFPE samples, using a DNA input range of 10 to 200 ng DNA.

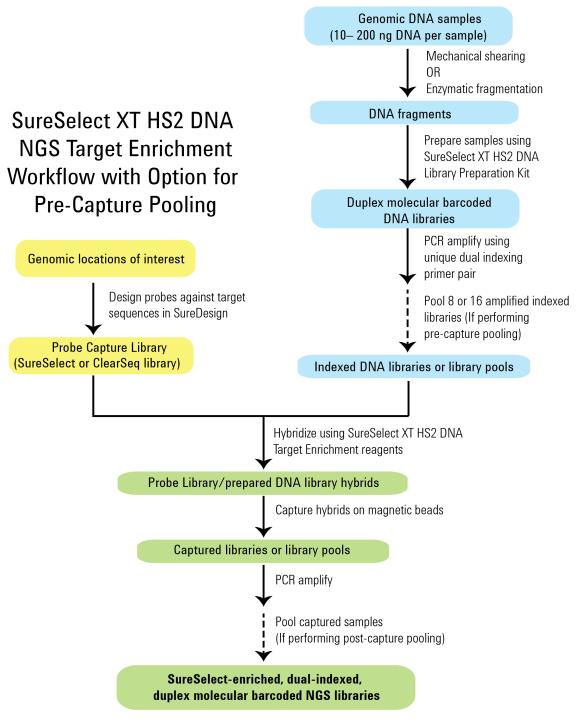


Figure 2 Overall sequencing sample preparation workflow.

Workflow Modulations

The SureSelect XT HS2 DNA target enrichment workflow can be modulated for different applications as described below and summarized in **Table 9** on page 29.

DNA Sample Integrity Protocols are compatible with both high-quality gDNA prepared from fresh or fresh frozen samples and lower-quality DNA prepared from FFPE samples with minor protocol modifications.

DNA Fragmentation Method Automated Enzymatic Fragmentation protocols are provided to support enzymatic fragmentation with automated liquid handling steps (see **"Method 1: Prepare fragmented DNA by enzymatic fragmentation"** on page 48). Alternatively, DNA can be mechanically sheared using manual liquid handling steps without automation (see **"Method 2. Prepare fragmented DNA by mechanical shearing"** on page 54).

Sample Pooling Options The automated SureSelect XT HS2 DNA target enrichment workflow supports two different approaches for sample pooling, with each using different SureSelect XT HS2 DNA reagents.

- Pre-capture pooling Following PCR amplification of the indexed DNA libraries, pool either 8 or 16 of the libraries (depending on Probe design size) prior to hybridization with the Probe. Each library pool is then hybridized with the Probe.
- Post-capture pooling Following hybridization and subsequent PCR amplification of the captured libraries, pool multiple indexed libraries together prior to sequencing. The allowable number of libraries per pool is dependent on the output specifications of the sequencing platform and the amount of sequencing data required.

Property	Options	Usage Notes
DNA Sample	Intact DNA	Use standard protocol with 10-200 ng input DNA
Integrity	FFPE DNA	Qualify DNA before use in assay; see "Protocol modifications for FFPE Samples" on page 138 for summary of protocol modifications.
DNA Fragmentation Method	Enzymatic Fragmentation	Use the Enzymatic Fragmentation automation protocols to perform enzymatic fragmentation of DNA samples. The protocol 00a EnzFrag_XT_HS2_ILM executes the liquid handling steps for the enzymatic fragmentation reactions. The protocol 00b EnzFrag_Dil_XT_HS2_ILM directs the dilution of the fragmented samples to the concentration needed for library preparation. Requires purchase of SureSelect Enzymatic Fragmentation Kit, 96 Reactions Automation (Agilent p/n 5191-6764)
	Mechanical (Covaris) Shearing	Perform mechanical shearing on Covaris Sample Preparation System using manual liquid handling (no automated protocol). Requires purchase of Covaris Sample Preparation System and consumables (see Table 5 , "Additional Required Materials based on DNA Sample Type/Fragmentation Method," on page 16).
Pooling Strategy	Pre-Capture Pooling	For library preparation, use a SureSelect XT HS2 DNA Library Preparation Kit that is compatible with pre-capture pooling (e.g., Agilent part numbers G9985A through G9985D). For target enrichment, use the SureSelect XT HS2 DNA Target Enrichment Kit (Post PCR). Refer to Table 3 on page 14.
	Post-Capture Pooling	Use one of the SureSelect XT HS2 DNA Reagent Kits compatible with post-capture pooling (Agilent part numbers G9983A through G9983D, or G9984A through G9984D). Kits include reagents for both library preparation and target enrichment. Refer to Table 3 on page 14.

Table 9 Summary of workflow modulations supported by the automation protocols

Automation Protocols used in the Workflow

Workflow Step	Substep	VWorks Protocols Used for NGS Bravo automation
	Aliquot AMPure XP beads for use in the Library Prep protocol	AMPureXP_Aliquot_LibPrep
AMPure XP Bead Aliquoting	Aliquot AMPure XP beads for use in the Pre-Capture PCR purification protocol	AMPureXP_Aliquot_PreCap
	Aliquot AMPure XP Beads for use in the Pre-Capture Pooling protocol for concentrating the DNA	AMPureXP_Aliquot_Pooling
	Aliquot AMPure XP Beads for use in the Post-Capture PCR purification protocol	AMPureXP_Aliquot_PostCap
Enzymatic DNA	Shear DNA samples using enzymatic fragmentation	00a EnzFrag_XT_HS2_ILM
ragmentation*	Dilute fragmented samples to appropriate concentration	00b EnzFrag_Dil_XT_HS2_ILM
	Prepare duplex, molecular-barcoded DNA libraries	01 LibraryPrep_XT_HS2_ILM
Library Preparation	Purify DNA libraries using AMPure XP beads	02 Cleanup_LibPrep_XT_HS2_ILM
	Amplify indexed DNA libraries with unique dual indexing primer pair	03 Pre-CapPCR_XT_HS2_ILM
	Purify indexed DNA libraries using AMPure XP beads using an elution volume suitable for single-plexed hybridization (i.e., the post-capture pooling workflow)	04a Cleanup_Pre-CapPCR_SP_XT_HS2_ILM
	Purify indexed DNA libraries using AMPure XP beads using an elution volume suitable for multi-plexed hybridization (i.e., the pre-capture pooling workflow)	04b Cleanup_Pre-CapPCR_MP_XT_HS2_ILM
	Analyze indexed DNA libraries using Agilent TapeStation platform	05 TS_D1000
Library Pooling (for pre-capture Dooling workflow)	Pool indexed DNA libraries in pools of 8 or 16	PreCapture_Pooling This protocol is set up and executed from the XT_HS2_Pooling VWorks Form
Single-Plex Pre-Hybridization (for post-capture pooling workflow)	Aliquot 500-1000 ng of prepped libraries	06a Aliquot_Libraries
Multi-Plex Pre-Hybridization	Dilute pooled samples of indexed DNA libraries to normalize volumes to 100 μL	06b Aliquot_Water
(for pre-capture pooling workflow)	Concentrate pooled samples to 24 μL for hybridization	06c PoolingConcentration_XT_HS2_ILM
Hybridization and	Hybridize prepped libraries or library pools (target enrichment)	07 Hyb_XT_HS2_ILM
Capture	Capture DNA hybrids	08 SSELCapture_XT_HS2_ILM
	Wash DNA hybrids	09 SSELWash_XT_HS2_ILM

Table 10 Overview of VWorks protocols

	Table 10	Overview of VWorks	protocols
--	----------	--------------------	-----------

Workflow Step	Substep	VWorks Protocols Used for NGS Bravo automation
	Amplify target-enriched libraries or library pools	10 Post-CapPCR_XT_HS2_ILM
Post-Capture	Purify enriched, amplified libraries or library pools using AMPure XP beads	11 Cleanup_Post-CapPCR_XT_HS2_ILM
Sample Processing	Analyze final libraries or library pools using Agilent TapeStation platform	12 TS_HighSensitivity_D1000
	For post-capture pooling workflow, pool indexed DNA libraries	13 Aliquot_Captures

* To shear DNA samples mechanically, rather than enzymatically, perform liquid handing steps manually on the Covaris Sample Preparation System (see **"Method 2. Prepare fragmented DNA by mechanical shearing"** on page 55). The XT HS2 VWorks Form does not include an automation protocol for mechanical shearing.

Experimental Setup Considerations for Automated Runs

Agilent SureSelect Automated Library Prep and Capture System runs may include 1 to 12 columns (equivalent to 8 to 96 wells) of gDNA samples to be enriched for sequencing on the Illumina platform. Plan your experiments using complete columns of samples.

Number of Columns Processed	Total Number of Samples Processed
1	8
2	16
3	24
4	32
5	40
б	48
7	56
8	64
9	72
10	80
11	88
12	96

Table 11 Columns to Samples Equivalency

The number of columns or samples that may be processed using the supplied reagents will depend on the experimental design. For greatest efficiency of reagent use, plan experiments using at least 3 columns per run. Each 96-reaction kit contains sufficient reagents for 96 reactions configured as 4 runs of 3 columns of samples per run.

Considerations for Placement of gDNA Samples in 96-well Plates for Automated Processing

- The NGS Bravo processes samples column-wise beginning at column 1. gDNA samples should be loaded into 96-well plates column-wise, in well order A1 to H1, then A2 to H2, ending with A12 to H12. When processing partial runs with <12 sample columns, do not leave empty columns between sample columns; always load the plate using the left-most column that is available.
- Samples are indexed during pre-capture amplification (see Figure 2). Assign each sample to
 the appropriate indexing primer during experimental design, and place the sample in the well
 corresponding to its assigned primer. See Table 99 on page 152 through Table 102 on
 page 153 for indexing primer plate maps.
- At the hybridization step (see **Figure 2**), you can add a different SureSelect or ClearSeq Capture Library to each row of the plate. Plan your experiment such that each prepared DNA library plate position corresponds to the appropriate Capture Library row in the sample plate.
- For post-capture amplification (see **Figure 2**), different Capture Libraries can require different amplification cycle numbers, based on sizes of the captured targets. It is most efficient to process similar-sized Capture Libraries on the same plate. See **Table 69** on page 113 to determine which Capture Libraries may be amplified on the same plate.

Considerations for Equipment Setup

- Some workflow steps require the rapid transfer of sample plates between the Bravo deck and a thermal cycler. Locate your thermal cycler in close proximity to the NGS Bravo to allow rapid and efficient plate transfer.
- Several workflow steps require that the sample plate be sealed using the PlateLoc thermal microplate sealer and then centrifuged to collect any dispersed liquid. To maximize efficiency, locate the centrifuge in close proximity to the NGS Bravo.

PCR Plate Type Considerations

Automation protocols include several liquid-handling steps in which reagents are dispensed to PCR plates in preparation for transfer to a thermal cycler. For these steps you must specify the PCR plate type to be used on the XT_HS2_ILM_v.A1.0.2.VWForm to allow correct configuration of the liquid handling components for the PCR plate type. Before you begin the automation protocol, make sure that you are using a supported PCR plate type. The PCR plate type to be used in the protocol is specified using the menu below. Vendor and part number information is provided for the supported plate types in **Table 12**.

2) Select labware for thermal cycling

96 ABI PCR half skirt in Red Alum Insert	•
96 ABI PCR half skirt in Red Alum Insert	
96 Agilent Semi-skirted PCR in Red Alum Insert	
96 Eppendorf Twin.tec half skirt PCR in Red Alum Insert	
96 Eppendorf Twin.tec PCR in Red Alum Insert	
96 Armadillo PCR in Red Alum Insert	

CAUTION

The plates listed in **Table 12** are compatible with the Agilent NGS Bravo and associated VWorks automation protocols, designed to support use of various thermal cyclers.

Do not use PCR plates that are not listed in **Table 12**, even if they are compatible with your chosen thermal cycler.

Table 12 Ordering information for supported PCR plates
--

Description in VWorks menu	Vendor and part number
96 ABI PCR half-skirted plates (MicroAmp Optical plates)	Thermo Fisher Scientific p/n N8010560
96 Agilent semi-skirted PCR plate	Agilent p/n 401334
96 Eppendorf Twin.tec half-skirted PCR plates	Eppendorf p/n 951020303
96 Eppendorf Twin.tec PCR plates (full-skirted)	Eppendorf p/n 951020401
96 Armadillo PCR plates (full-skirted),	Thermo Fisher Scientific p/n AB2396

3

Preparation of AMPure XP Bead Plates

Step 1. Prepare the bead plate to be used for library preparation 36

Step 2. Prepare the bead plate to be used for Pre-Capture Purification 38

Step 3. Prepare the bead plate to be used for concentration of pooled DNA (pre-capture pooling workflow only) **40**

Step 4. Prepare the bead plate to be used for Post-Capture Purification 42

This chapter provides instructions on preparing all of the plates of AMPure XP beads that are needed throughout the entire workflow. Each plate of AMPure XP beads is prepared using a separate automation protocol available in the XT HS2 VWorks form.

Preparing the plates of AMPure XP beads at the start of the workflow allows you to execute the remainder of the workflow with fewer delays between steps. Importantly, however, if you are running the workflow over multiple days, only prepare the plates of AMPure XP beads that are to be used within the day and the following day. *Do not prepare AMPure XP bead plates more than one day in advance of when they are needed.*

Step 1. Prepare the bead plate to be used for library preparation

The **02 Cleanup_LibPrep_XT_HS2_ILM** protocol requires a bead plate containing 80 μ L of beads in each well. Use the **AMPureXP_Aliquot_LibPrep** protocol to prepare the bead plate needed for library preparation.

Prepare the NGS Bravo and reagents for the AMPureXP_Aliquot_LibPrep protocol

- 1 Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- **2** Prepare an Agilent shallow well reservoir containing the AMPure XP bead suspension.
 - a Verify that the AMPure XP bead suspension is at room temperature.
 - **b** Mix the bead suspension well so that the reagent appears homogeneous and consistent in color. *Do not freeze*.
 - c Directly pour the bead suspension from the bottle into the reservoir. Fill the columns of the reservoir with enough bead suspension to cover the pyramid-shaped wells. Only fill as many columns as will be needed for the **02 Cleanup_LibPrep_XT_HS2_ILM** protocol (each column accommodates 8 gDNA samples).

Load the NGS Bravo

3 Load the Bravo deck according to **Table 13**.

Table 13 Initial Bravo deck configuration for AMPureXP_Aliquot_LibPrep protocol

Location	Content
2	New tip box
5	Empty Agilent Deep Well plate
6	Reservoir of AMPure XP bead suspension prepared in step 2
8	Empty tip box

Run VWorks protocol AMPureXP_Aliquot_LibPrep

- 4 On the SureSelect setup form, under **Select protocol to execute**, select the **AMPureXP_Aliquot_LibPrep** protocol.
- 5 Select the number of columns of samples to be processed.
- 6 Click Display Initial Bravo Deck Setup.

🧭 Display Initial Bravo Deck Setup

- 7 Verify that the Bravo deck has been set up as displayed on the right side of the form.
- 8 Verify that the **Current Tip State** indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See **page 24** for more information on using this segment of the form during the run.

9 When verification is complete, click Run Selected Protocol.

Running the **AMPureXP_Aliquot_LibPrep** protocol takes approximately 5 minutes. The protocol directs the NGS Bravo to aliquot 80 μ L of beads from the Agilent shallow well reservoir into the wells of the Agilent Deep Well plate.

10 When the protocol is complete, remove the Agilent Deep Well plate containing the AMPure XP bead suspension from position 5 of the Bravo deck. Keep at 4°C until needed in the 02 Cleanup_LibPrep_XT_HS2_ILM protocol (refer to Table 35 on page 62). Use the plate within the next 24 hours.

If desired, pour any unused bead suspension still present in the Agilent shallow well reservoir back into the original stock bottle.

Step 2. Prepare the bead plate to be used for Pre-Capture Purification

The pre-capture PCR cleanup protocols (04a Cleanup_Pre-CapPCR_SP_XT_HS2_ILM and 04b Cleanup_Pre-CapPCR_MP_XT_HS2_ILM) require a bead plate containing 50 μ L of beads in each well. Use the AMPureXP_Aliquot_PreCap protocol to prepare the bead plate needed for purification of pre-capture PCR products.

Prepare the NGS Bravo and reagents for the AMPureXP_Aliquot_PreCap protocol

- 1 Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- 2 Prepare an Agilent shallow well reservoir containing the AMPure XP bead suspension.
 - a Verify that the AMPure XP bead suspension is at room temperature.
 - **b** Mix the bead suspension well so that the reagent appears homogeneous and consistent in color. *Do not freeze*.
 - **c** Directly pour the bead suspension from the bottle into the reservoir. Fill the columns of the reservoir with enough bead suspension to cover the pyramid-shaped wells. Only fill as many columns as will be needed for the pre-capture PCR cleanup protocol (each column accommodates 8 amplified DNA samples).

Load the NGS Bravo

3 Load the Bravo deck according to Table 14.

Table 14 Initial Bravo deck configuration for AMPureXP_Aliquot_PreCap protocol

Location	Content
2	New tip box
5	Empty Agilent Deep Well Plate
6	Reservoir of AMPure XP bead suspension prepared in step 2
8	Empty tip box

Run VWorks protocol AMPureXP_Aliquot_PreCap

- 4 On the SureSelect setup form, under **Select protocol to execute**, select the **AMPureXP_Aliquot_PreCap** protocol.
- 5 Select the number of columns of samples to be processed.
- 6 Click Display Initial Bravo Deck Setup.

🥑 Display Initial Bravo Deck Setup

7 Verify that the Bravo deck has been set up as displayed on the right side of the form.

- 8 Verify that the **Current Tip State** indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See **page 24** for more information on using this segment of the form during the run.
- 9 When verification is complete, click Run Selected Protocol.

Running the **AMPureXP_Aliquot_PreCap** protocol takes approximately 5 minutes. The protocol directs the NGS Bravo to aliquot 50 μ L of beads from the Agilent shallow well reservoir into the wells of the Agilent Deep Well plate.

10 When the protocol is complete, remove the Agilent Deep Well plate containing the AMPure XP bead suspension from position 5 of the Bravo deck. Keep at 4°C until needed in the 04a Cleanup_Pre-CapPCR_SP_XT_HS2_ILM or 04b Cleanup_Pre-CapPCR_MP_XT_HS2_ILM protocol (refer to Table 42 on page 71). Use the plate within the next 24 hours.

If desired, pour any unused bead suspension still present in the Agilent shallow well reservoir back into the original stock bottle.

Step 3. Prepare the bead plate to be used for concentration of pooled DNA (pre-capture pooling workflow only)

The **06c PoolingConcentration_XT_HS2_ILM** protocol is part of the pre-capture pooling workflow. It requires a bead plate containing 180 μ L of beads in each well. Use the **AMPureXP_Aliquot_Pooling** protocol to prepare the bead plate needed for concentrating the DNA library pools.

The bead plate for the **06c PoolingConcentration_XT_HS2_ILM** protocol is only needed if you are running the pre-capture pooling workflow option. If you are using the post-capture pooling workflow, proceed to **"Step 4. Prepare the bead plate to be used for Post-Capture Purification"** on page 42.

Prepare the NGS Bravo and reagents for the AMPureXP_Aliquot_Pooling protocol

- 1 Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- **2** Prepare an Agilent shallow well reservoir containing the AMPure XP bead suspension.
 - a Verify that the AMPure XP bead suspension is at room temperature.
 - **b** Mix the bead suspension well so that the reagent appears homogeneous and consistent in color. *Do not freeze*.
 - c Directly pour the bead suspension from the bottle into the reservoir. Fill the columns of the reservoir with enough bead suspension to cover the pyramid-shaped wells. Only fill as many columns as will be needed for the O6c PoolingConcentration_XT_HS2_ILM protocol (each column accommodates 8 DNA library pools).

Load the NGS Bravo

3 Load the Bravo deck according to Table 15.

Table 15 Initial Bravo deck configuration for AMPureXP_Aliquot_Pooling protocol

Location	Content
2	New tip box
5	Empty Agilent Deep Well Plate
6	Reservoir of AMPure XP bead suspension prepared in step 2
8	Empty tip box

Run VWorks protocol AMPureXP_Aliquot_Pooling

- 4 On the SureSelect setup form, under **Select protocol to execute**, select the **AMPureXP_Aliquot_Pooling** protocol.
- 5 Select the number of columns of samples to be processed.
- 6 Click Display Initial Bravo Deck Setup.

🥑 Display Initial Bravo Deck Setup

- 7 Verify that the Bravo deck has been set up as displayed on the right side of the form.
- 8 Verify that the **Current Tip State** indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See **page 24** for more information on using this segment of the form during the run.
- 9 When verification is complete, click Run Selected Protocol.

Running the **AMPureXP_Aliquot_Pooling** protocol takes approximately 5 minutes. The protocol directs the NGS Bravo to aliquot 180 μ L of beads from the Agilent shallow well reservoir into the wells of the Agilent Deep Well plate.

10 When the protocol is complete, remove the Agilent Deep Well plate containing the AMPure XP bead suspension from position 5 of the Bravo deck. Keep at 4°C until needed in the 06c PoolingConcentration_XT_HS2_ILM protocol (refer to Table 50 on page 91). Use the plate within the next 24 hours.

If desired, pour any unused bead suspension still present in the Agilent shallow well reservoir back into the original stock bottle.

Step 4. Prepare the bead plate to be used for Post-Capture Purification

The **11 Cleanup_Post-CapPCR__XT_HS2_ILM** protocol requires a bead plate containing 50 μ L of beads in each well. Use the **AMPureXP_Aliquot_PostCap** protocol to prepare the bead plate needed for purification of post-capture PCR products.

Prepare the NGS Bravo and reagents for the AMPureXP_Aliquot_PostCap protocol

- 1 Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- **2** Prepare an Agilent shallow well reservoir containing the AMPure XP bead suspension.
 - a Verify that the AMPure XP bead suspension is at room temperature.
 - **b** Mix the bead suspension well so that the reagent appears homogeneous and consistent in color. *Do not freeze*.
 - c Directly pour the bead suspension from the bottle into the reservoir. Fill the columns of the reservoir with enough bead suspension to cover the pyramid-shaped wells. Only fill as many columns as will be needed for the 11 Cleanup_Post-CapPCR_XT_HS2_ILM protocol (each column accommodates 8 indexed libraries).

Load the NGS Bravo

3 Load the Bravo deck according to Table 16.

Table 16 Initial Bravo deck configuration for AMPureXP_Aliquot_PostCap protocol

Location	Content
2	New tip box
5	Empty Agilent Deep Well Plate
6	Reservoir of AMPure XP bead suspension prepared in step 2
8	Empty tip box

Run VWorks protocol AMPureXP_Aliquot_PostCap

- 4 On the SureSelect setup form, under **Select protocol to execute**, select the **AMPureXP_Aliquot_PostCap** protocol.
- 5 Select the number of columns of samples to be processed.
- 6 Click Display Initial Bravo Deck Setup.

🥑 Display Initial Bravo Deck Setup

- 7 Verify that the Bravo deck has been set up as displayed on the right side of the form.
- 8 Verify that the **Current Tip State** indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See **page 24** for more information on using this segment of the form during the run.

9 When verification is complete, click Run Selected Protocol.

Running the **AMPureXP_Aliquot_PostCap** protocol takes approximately 5 minutes. The protocol directs the NGS Bravo to aliquot 50 μ L of beads from the Agilent shallow well reservoir into the wells of the Agilent Deep Well plate.

10 When the protocol is complete, remove the Agilent Deep Well plate containing the AMPure XP bead suspension from position 5 of the Bravo deck. Keep at 4°C until needed in the

11 Cleanup_Post-CapPCR__XT_HS2_ILM protocol (refer to **Table 74** on page 117). Use the plate within the next 24 hours.

If desired, pour any unused bead suspension still present in the Agilent shallow well reservoir back into the original stock bottle.

SureSelect XT HS2 DNA System Protocol

4

Sample Preparation

Step 1. Prepare and analyze quality of genomic DNA samples 46
Preparation of high-quality gDNA from fresh biological samples 46
Preparation and qualification of gDNA from FFPE samples 46
Step 2. Fragment the DNA 48
Method 1: Prepare fragmented DNA by enzymatic fragmentation 48
Method 2. Prepare fragmented DNA by mechanical shearing 54
Step 3. Prepare adaptor-ligated libraries 57
Step 4. Purify adaptor-ligated DNA using AMPure XP beads 62
Step 5. Amplify adaptor-ligated libraries 64
Step 6. Purify amplified DNA using AMPure XP beads 70
Step 7. Assess Library DNA quantity and quality 73
Option 1: Analysis using an Agilent 4200 TapeStation Instrument and D1000 ScreenTape
Option 2: Analysis using an equivalent platform (non-automated) 77

For an overview of the SureSelect XT HS2 target enrichment workflow, see **Figure 2** on page 29. This section contains instructions for automated gDNA library preparation for the Illumina paired-read sequencing platform. For each sample to be sequenced, an individual indexed and molecular-barcoded library is prepared.

The library preparation protocol is compatible with both high-quality gDNA prepared from fresh or fresh frozen samples and lower-quality DNA prepared from FFPE samples. Modifications required for FFPE samples are included throughout the protocol steps. For a summary of modifications for FFPE samples see **Chapter 7** on **page 137**.

The protocol requires 10 ng to 200 ng of input DNA, with adjustments to DNA input amount or quantification method required for some FFPE samples. For optimal results, use the maximum amount of input DNA available within the recommended range. Analysis using the molecular barcodes is recommended when sample is available in low amounts (10-50 ng) or when detecting very low allele frequency variants using small probe designs.

73

Step 1. Prepare and analyze quality of genomic DNA samples

Preparation of high-quality gDNA from fresh biological samples

1 Prepare high-quality gDNA using a suitable purification system, such as Qiagen's QIAamp DNA Mini Kit, following the manufacturer's protocol.

NOTE

Make sure genomic DNA samples are of high quality with an OD 260/280 ratio ranging from 1.8 to 2.0.

2 Use the Qubit BR dsDNA Assay Kit to determine the concentration of each gDNA sample. Follow the manufacturer's instructions for the instrument and assay kit.

Additional qualification of DNA samples is not required for DNA derived from fresh biological samples. Depending on the type of sample fragmentation method to be used, proceed to either **"Method 1: Prepare fragmented DNA by enzymatic fragmentation"** on page 48 or **"Method 2. Prepare fragmented DNA by mechanical shearing"** on page 54.

Preparation and qualification of gDNA from FFPE samples

1 Prepare gDNA from FFPE tissue sections using Qiagen's QIAamp DNA FFPE Tissue Kit and Qiagen's Deparaffinization Solution, following the manufacturer's protocol. Elute the final gDNA samples from the MinElute column in two rounds, using 30 μL Buffer ATE in each round, for a final elution volume of approximately 60 μL.

NOTE

If tissue lysis appears incomplete after one hour of digestion with Proteinase K, add an additional 10 μ L of Proteinase K and continue incubating at 56°C, with periodic mixing, for up to three hours.

Store the gDNA samples on ice for same-day library preparation, or at -20° C for later processing.

2 Assess the quality (DNA integrity) for each FFPE DNA sample using one of the methods below.

Option 1: Qualification using the Agilent NGS FFPE QC Kit (Recommended Method)

The Agilent NGS FFPE QC Kit provides a qPCR-based assay for DNA sample integrity determination. Results include a $\Delta\Delta$ Cq DNA integrity score and the precise quantity of amplifiable DNA in the sample, allowing direct normalization of DNA input for each sample. DNA input recommendations based on $\Delta\Delta$ Cq scores for individual samples are summarized in **Table 17**.

- **a** Use the Qubit BR dsDNA Assay Kit to determine the concentration of each gDNA sample. Follow the manufacturer's instructions for the instrument and assay kit.
- **b** Remove a 1 μ L aliquot of the FFPE gDNA sample for analysis using the Agilent NGS FFPE QC Kit to determine the $\Delta\Delta$ Cq DNA integrity score. See the kit user manual (G9700-90000) at www.agilent.com for more information.
- **c** For all samples with $\Delta\Delta$ Cq DNA integrity score \leq 1, use the Qubit-based gDNA concentration determined in **step a**, above, to determine volume of input DNA needed for the protocol.

d For all samples with $\Delta\Delta$ Cq DNA integrity score >1, use the qPCR-based concentration of amplifiable gDNA, reported by the Agilent NGS FFPE QC Kit results, to determine amounts of input DNA for the protocol.

Table 17 SureSelect XT HS2 DNA input modifications based on $\Delta\Delta$ Cq DNA integrity score

Protocol Parameter	non-FFPE Samples	FFPE Samples				
		∆∆Cq≤1 [*]	∆∆Cq >1			
DNA input for Library Preparation	10 ng to 200 ng DNA, based on Qubit Assay	10 ng to 200 ng DNA, based on Qubit Assay	10 ng to 200 ng of amplifiable DNA, based on qPCR quantification			

* FFPE samples with ΔΔCq scores ≤1 should be treated like non-FFPE samples for DNA input amount determinations. For samples of this type, make sure to use the DNA concentration determined by the Qubit Assay, instead of the concentration determined by qPCR, to calculate the volume required for 10-200 ng DNA.

Option 2: Qualification using Agilent's Genomic DNA ScreenTape assay DIN score

Agilent's Genomic DNA ScreenTape assay, used in conjunction with Agilent's 4200 TapeStation, provides a quantitative electrophoretic assay for DNA sample integrity determination. This assay reports a DNA Integrity Number (DIN) score for each sample which is used to estimate the appropriate normalization of DNA input required for low-integrity DNA samples.

- **a** Use the Qubit BR dsDNA Assay Kit to determine the concentration of each gDNA sample. Follow the manufacturer's instructions for the instrument and assay kit.
- **b** Remove a 1 µL aliquot of the FFPE gDNA sample and analyze using the Genomic DNA ScreenTape assay. See the user manual at www.agilent.com for more information.
- **c** Using the DIN score reported for each sample in the Genomic DNA ScreenTape assay, consult **Table 18** to determine the recommended amount of input DNA for the sample.

Table 18 SureSelect XT HS2 DNA input modifications based on DNA Integrity Number (DIN) score

Protocol	non-FFPE	FFPE Samples								
Parameter	Samples	DIN > 8*	DIN 3-8	DIN<3						
DNA input for Library Preparation	10 ng to 200 ng DNA, quantified by Qubit Assay	10 ng to 200 ng DNA, quantified by Qubit Assay	Use at least 15 ng for more intact samples and at least 40 ng for less intact samples. Use the maximum amount of DNA available, up to 200 ng, for all samples. Quantify by Qubit Assay.	Use at least 50 ng for more intact samples and at least 100 ng for the least intact samples. Use the maximum amount of DNA available, up to 200 ng, for all samples. Quantify by Qubit Assay.						

* FFPE samples with DIN>8 should be treated like non-FFPE samples for DNA input amount determinations.

NOTE

DNA quality affects the recommended pre-capture PCR cycle number, as outlined in **Table 38** on page 65. Samples with differing PCR cycle number requirements must be processed in separate library preparation runs.

Step 2. Fragment the DNA

The SureSelect XT HS2 target enrichment workflow supports two different methods for preparing fragmented DNA.

- Method 1 uses enzymatic fragmentation, with liquid-handling steps executed by automation protocols. The instructions are described in "Method 1: Prepare fragmented DNA by enzymatic fragmentation" on page 48.
- Method 2 uses mechanical shearing, and is described in **"Method 2. Prepare fragmented DNA** by mechanical shearing" on page 54.

Select the desired option and then follow the instructions in the appropriate section.

Method 1: Prepare fragmented DNA by enzymatic fragmentation

In method 1, the NGS Bravo completes the liquid-handling steps for enzymatic fragmentation of the DNA samples using protocol **00a EnzFrag_XT_HS2_ILM**. After the Bravo completes the liquid-handling steps, you transfer the PCR plate to a thermal cycler for incubation. You then transfer the PCR plate back to the Bravo deck to run a dilution protocol called **00b EnzFrag_Dil_XT_HS2_ILM** that dilutes the samples to 50-µL volumes.

Method 1 uses the components listed in **Table 19**. Thaw and mix each component as directed in **Table 19** before use. Before starting the run, you need to prepare the Fragmentation master mix (with overage) without the DNA sample. **Table 22** provides Fragmentation master mix volumes based on the number of columns of samples in the run.

Kit Component	it Component Storage Location		Mixing Method	Where Used
5X SureSelect Fragmentation Buffer (blue cap)	SureSelect Enzymatic Fragmentation Kit, −20°C	Thaw on ice then keep on ice	Vortexing	page 50
SureSelect Fragmentation Enzyme (green cap)	SureSelect Enzymatic Fragmentation Kit, –20°C	Place on ice just before use	Inversion	page 50

Table 19 Reagents thawed before use in protocol

Prepare the NGS Bravo for protocol 00a EnzFrag_XT_HS2_ILM

- 1 Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- 2 Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- **3** Pre-set the temperature of Bravo deck position 4 to 4°C using the Inheco Multi TEC control touchscreen, as described in **"Setting the Temperature of Bravo Deck Heat Blocks"** on page 21. Bravo deck position 4 corresponds to CPAC 2, position 1 on the Multi TEC control touchscreen.
- 4 Place a red PCR plate insert at Bravo deck position 4.

Pre-program the thermal cycler for the fragmentation reaction

5 Pre-program a thermal cycler using the program in **Table 20**. Start the program, then immediately pause the program.

Table 20 Thermal cycler program for enzymatic fragmentation*

Step	Temperature	Time
Step 1	37°C	Varies see Table 21
Step 2	65°C	5 minutes
Step 3	4°C	Hold

* Use a reaction volume setting of 20 μ L, if required for thermal cycler set up.

Optimal fragmentation conditions may vary based on the NGS read length to be used in the workflow. Refer to **Table 21** below for the duration at 37°C appropriate for your sample type and required NGS read length.

Table 21 Fragmentation duration based on sample type and NGS read length

NGS read length	Target fragment	Duration of 37°C incubation step						
requirement	size	High-quality DNA samples	FFPE DNA samples					
2 × 100 reads	150 to 200 bp	25 minutes	25 minutes					
2 × 150 reads	180 to 250 bp	15 minutes	25 minutes					

Prepare the sample plate for fragmentation

6 In the wells of the PCR plate, dilute 10 ng to 200 ng of each gDNA sample with nuclease-free water to a final volume of 15 μ L. Use the PCR plate that is to be placed in the thermal cycler for the enzymatic fragmentation program.

See **Table 17** or **Table 18** for FFPE DNA input guidelines based on the measured DNA quality in each sample.

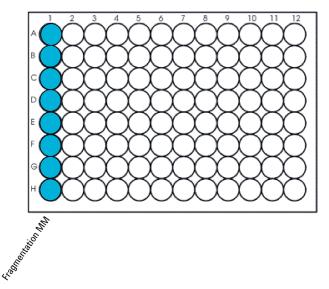
Prepare the Fragmentation master mix

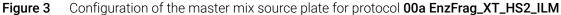
7 Prepare the appropriate volume of Fragmentation master mix by combining the reagents in Table 22. Mix well by pipetting up and down 20 times or seal the tube and vortex at high speed for 5–10 seconds. Spin briefly to remove any bubbles and keep on ice.

Table 22 lists the required reagent volumes for 1 to 12 columns of samples. Make sure to use the volumes appropriate for your run.

Table 22 Preparation of Fragmentation master mix for 1 to 12 columns of samples

Reagent	Volume for 1 Library	Volume (μL) Based on Number of Columns of Samples (1 to 12 Columns)											
		1	2	3	4	5	6	7	8	9	10	11	12
Nuclease-free water	2 µL	42.5	59.5	76.5	97.8	119.0	136.0	153.0	170.0	191.3	208.3	225.3	253.8
5X SureSelect Fragmentation Buffer (blue cap)	2 µL	42.5	59.5	76.5	97.8	119.0	136.0	153.0	170.0	191.3	208.3	225.3	253.8
SureSelect Fragmentation Enzyme (green cap)	1 μL	21.3	29.8	38.3	48.9	59.5	68.0	76.5	85.0	95.6	104.1	112.6	126.9
Total Volume	5 µL	106.3	148.8	191.3	244.5	297.5	340.0	382.5	425.0	478.2	620.7	583.2	634.4


Prepare the master mix source plate (Eppendorf twin.tec or Armadillo plate)


8 Prepare the master mix source plate for the run as indicated in **Table 23**. Add the indicated volume of master mix to all wells of the indicated column of the plate. Keep the master mix on ice during the aliquoting steps. The final configuration of the master mix source plate is shown in **Figure 3**.

Use either an **Eppendorf twin.tec** plate or an **Armadillo** plate as the master mix source plate, as indicated in the Processing Plate setting on the form.

Table 23 Preparation of the master mix source plate for 00a EnzFrag_XT_HS2_ILM protocol

Master Mix Position Solution on Sour			Volume (μL) of Master Mix added per Well of Selected Processing Source Plate Based on Number of Columns in the Run (1 to 12 Columns)										
	Plate	1	2	3	4	5	6	7	8	9	10	11	12
Fragmentation master mix	Column 1 (A1-H1)	12.5	17.5	22.5	28.8	35.0	40.0	45.8	51.5	57.3	63.0	68.8	75.0

- **9** Seal the master mix source plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.
- **10** Centrifuge the plate for 30 seconds to drive the well contents off the walls and plate seal and to eliminate any bubbles. Keep the master mix source plate on ice.

The presence of bubbles in source plate solutions may cause inaccurate volume transfer by the Bravo liquid handling platform. Ensure that the source plate is sealed and centrifuged prior to use in a run.

Load the NGS Bravo

NOTE

11 Load the Bravo deck according to Table 24.

Location	Content
2	New tip box
4	gDNA samples in PCR plate seated in red insert (PCR plate type must be specified on setup form under Parameter 2)
5	Empty processing plate (Eppendorf twin.tec or Armadillo plate)
8	Empty tip box
9	Fragmentation master mix source plate, unsealed

Run VWorks protocol 00a EnzFrag_XT_HS2_ILM

12 On the SureSelect setup form, under **Select protocol to execute**, select the **00a EnzFrag_XT_HS2_ILM** protocol.

13 Under **Select labware for thermal cycling**, select the specific type of PCR plate used at position 4 of the Bravo deck.

- 14 Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.
- **15** Select the number of columns of samples to be processed.
- 16 Click Display Initial Bravo Deck Setup.

🥑 Display Initial Bravo Deck Setup

- 17 Verify that the Bravo deck has been set up as displayed on the right side of the form.
- 18 Verify that the Current Tip State indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See page 24 for more information on using this segment of the form during the run.
- 19 When verification is complete, click Run Selected Protocol.

Running the **00a EnzFrag_XT_HS2_ILM** protocol takes approximately 10 minutes. Once complete, the samples are ready for fragmentation (performed in the pre-programmed thermal cycler). The samples are located in the plate at position 4 of the Bravo deck.

20 When you see the following prompt, remove the PCR plate from position 4 of the Bravo deck and seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing setting of 165°C and 1.0 seconds.

Enzymatic Fragmentation Plate at Pos. 4
Seal thermal cycler plate and run the enzymatic fragmentation protocol for desired sample type and NGS read length.
User data entry:
Pause and Diagnose Continue

- **21** Centrifuge the plate for 30 seconds to drive the well contents off the walls and plate seal and to eliminate air bubbles.
- 22 Immediately place the sample plate in the thermal block. Close the lid and resume the thermal cycler program in Table 20.
- 23 From the Bravo deck, remove the Eppendorf twin.tec or Armadillo plate that was used as the Fragmentation master mix source plate from position 9 and set it aside. You will use this same plate again for the 03 Pre-CapPCR_XT_HS2_ILM protocol as described in "Prepare the pre-capture PCR master mix and master mix source plate" on page 66.

Prepare the NGS Bravo and reagents for protocol 00b EnzFrag_Dil_XT_HS2_ILM

- 24 Pre-set the temperature of Bravo deck position 4 to 4°C using the Inheco Multi TEC control touchscreen, as described in Setting the Temperature of Bravo Deck Heat Blocks. Bravo deck position 4 corresponds to CPAC 2, position 1 on the Multi TEC control touchscreen.
- 25 Place a red PCR plate insert at Bravo deck position 4.
- 26 Prepare an Agilent shallow well reservoir containing 30 mL of nuclease-free water.

Make sure that the water in the reservoir does not contain bubbles. If bubbles are present, dislodge them with a clean pipette tip.

At the end of the automation protocol, you may retain the Agilent shallow well reservoir for use in the **02 Cleanup_LibPrep_XT_HS2_ILM** protocol (see **"Step 4. Purify adaptor-ligated DNA using AMPure XP beads"** on page 62) if you are running that protocol today.

Load the NGS Bravo

27 Load the Bravo deck according to Table 25.

Table 25 Initial Bravo deck configuration f	or 00b EnzFrag_Dil_XT_HS2_ILM protocol
---	--

Location	Content
2	New tip box
4	PCR plate containing fragmented DNA samples seated in red insert (PCR plate type must be specified on setup form under Parameter 2)
5	Empty processing plate (Eppendorf twin.tec or Armadillo plate)
б	Nuclease-free water reservoir from step 26
8	Empty tip box

Run VWorks protocol 00b EnzFrag_Dil_XT_HS2_ILM

- 28 On the SureSelect setup form, under Select protocol to execute, select the 00b EnzFrag_Dil_XT_HS2_ILM protocol.
- **29** Under **Select labware for thermal cycling**, select the specific type of PCR plate used at position 4 of the Bravo deck.
- **30** Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.
- 31 Select the number of columns of samples to be processed.
- 32 Click Display Initial Bravo Deck Setup.

🧭 Display Initial Bravo Deck Setup

- **33** Verify that the Bravo deck has been set up as displayed on the right side of the form.
- 34 Verify that the **Current Tip State** indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See **page 24** for more information on using this segment of the form during the run.
- 35 When verification is complete, click Run Selected Protocol.

Running the **00b EnzFrag_Dil_XT_HS2_ILM** protocol takes approximately 5 minutes. Once complete, the samples are ready for library preparation. The samples are located in the processing plate at position 1 of the Bravo deck.

NOTE

This is not a stopping point in the workflow, and analysis of the enzymatically-fragmented samples is not required prior to library preparation. Moreover, electrophoretic analysis of the fragmented samples may produce misleading results due to the presence of agents that affect DNA fragment migration.

Proceed directly to "Step 3. Prepare adaptor-ligated libraries" on page 57.

Method 2. Prepare fragmented DNA by mechanical shearing

In method 2, the 50- μ L gDNA samples are mechanically sheared using conditions optimized for either high-quality or FFPE DNA.

The target fragment size and corresponding shearing conditions may vary for workflows using different NGS read lengths. See **Table 26** for guidelines. Complete shearing instructions are provided on **page 55**.

Table 26 Covaris shearing duration based on NGS length

NGS read length requirement	Target fragment size	Shearing duration for high-quality DNA samples	Shearing duration for FFPE DNA samples
20 × 100 reads	150 to 200 bp	2 × 120 seconds	240 seconds
20 × 150 reads	180 to 250 bp	2 × 60 seconds	240 seconds

NOTE

Shearing protocols have been optimized using a Covaris model E220 instrument and the Covaris 96 microTUBE plate. Consult the manufacturer's recommendations for use of other Covaris instruments or sample holders to achieve the desired target DNA fragment size.

- 1 Set up the Covaris E220 instrument. Refer to the Covaris instrument user guide for details.
 - **a** Check that the water in the Covaris tank is filled with fresh deionized water to the appropriate fill line level according to the manufacturer's recommendations for the specific instrument model and sample tube or plate in use.
 - **b** Check that the water covers the visible glass part of the tube.
 - **c** On the instrument control panel, push the Degas button. Degas the instrument according to the manufacturer's recommendations, typically 30–60 minutes.
 - **d** Set the chiller temperature to between 2°C to 5°C to ensure that the temperature reading in the water bath displays 5°C. Consult the manufacturer's recommendations for addition of coolant fluids to prevent freezing.
- 2 Prepare the DNA samples for the run by diluting 10–200 ng of each gDNA sample with 1X Low TE Buffer (10 mM Tris- HCl, pH 7.5–8.0, 0.1 mM EDTA) to a final volume of 50 µL. Vortex well to mix, then spin briefly to collect the liquid. Keep the samples on ice.

See **Table 17** or **Table 18** for FFPE DNA input guidelines based on the measured DNA quality in each sample.

Do not dilute samples to be sheared using water. Shearing samples in water reduces the overall library preparation yield and complexity.

- **3** Vortex each sample dilution to mix, then spin briefly to collect the liquid. Keep the samples on ice.
- 4 Complete the DNA shearing steps below for each of the gDNA samples.

Transfer the $50-\mu$ L DNA sample into a Covaris 96 microTUBE Plate, using a tapered pipette tip to slowly transfer the sample through the pre-split foil seal. Seal the plate with the provided foil seal.

- **a** Spin the 96 microTUBE Plate for 30 seconds to collect the liquid and to remove any bubbles from the bottom of the tube.
- **b** Load the 96 microTUBE Plate onto the loading tray and shear the DNA with the settings in **Table 27**.

Setting	High-quality DNA for 2 × 100 read NGS	High-quality DNA for 2 × 150 read NGS	FFPE DNA (2 × 100 or 2 × 150 read NGS)
Duty Factor	10%	10%	10%
Peak Incident Power (PIP)	175	175	175
Cycles per Burst	200	200	200
Treatment Time	2 × 120 seconds	2 × 60 seconds	240 seconds
Bath Temperature	2° to 8° C	2° to 8° C	2° to 8° C

Table 27 Shear settings for Covaris E-series instrument (SonoLab software v7 or later)

Use the steps below for two-round shearing of high-quality DNA samples only:

•Shear for 120 seconds

NOTE

- •Spin the 96 microTUBE Plate for 10 seconds
- •Shear for additional 120 seconds
- •Spin the 96 microTUBE Plate for 10 seconds

- c Insert a pipette tip through the foil seal, then slowly remove the sheared DNA.
- **d** Transfer the sheared DNA sample (approximately 50 µL) to a sample well of a 96-well processing plate (Eppendorf twin.tec or Armadillo plate). Keep the samples on ice.
- e After transferring the DNA sample, spin the 96 microTUBE Plate briefly to collect any residual sample volume. Transfer any additional collected liquid to the sample well used in **step d**.

ΝΟΤΕ

It is important to avoid loss of input DNA at this step, especially for low-abundance DNA samples. Visually inspect the microTUBE to ensure that all of the sample has been transferred. If droplets remain in the microTUBE, repeat **step e**.

Step 3. Prepare adaptor-ligated libraries

This step uses automation protocol 01 LibraryPrep_XT_HS2_ILM.

In this step, the NGS Bravo completes the DNA end modification steps required for SureSelect target enrichment, including end-repair, dA-tailing, and ligation of the molecular-barcoded adaptor.

This step uses the components listed in **Table 28**. Thaw and mix each component as directed in **Table 28** before use. Before starting the run, you need to prepare master mixes (with overage) for each step, without the DNA sample. Master mixes for runs that include 1, 2, 3, 4, 6, and 12 columns (including overage) are shown in reagent preparation tables.

Table 28 Reagents thawed before use in protocol

Kit Component	Storage Location	Thawing Conditions	Mixing Method	Where Used
End Repair-A Tailing Buffer (bottle)	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR), -20°C	Thaw on ice (may require >20 minutes) then keep on ice	Vortexing	page 58
Ligation Buffer (bottle)	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR), −20°C	Thaw on ice (may require >20 minutes) then keep on ice	Vortexing	page 59
End Repair-A Tailing Enzyme Mix (orange cap)	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR), −20°C	Place on ice just before use	Inversion	page 58
T4 DNA Ligase (blue cap)	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR), −20°C	Place on ice just before use	Inversion	page 59
SureSelect XT HS2 Adaptor Oligo Mix (white cap)	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR), −20°C	Thaw on ice then keep on ice	Vortexing	page 59

Prepare the NGS Bravo for protocol 01 LibraryPrep_XT_HS2_ILM

- 1 Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- 2 Pre-set the temperature of Bravo deck position 4 to 79°C using the Inheco Multi TEC control touchscreen, as described in Setting the Temperature of Bravo Deck Heat Blocks. Bravo deck position 4 corresponds to CPAC 2, position 1 on the Multi TEC control touchscreen.
- 3 Pre-set the temperature of Bravo deck position 6 to 4°C using the Inheco Multi TEC control touchscreen, as described in Setting the Temperature of Bravo Deck Heat Blocks. Bravo deck position 6 corresponds to CPAC 2, position 2 on the Multi TEC control touchscreen.
- **4** Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.

Prepare the DNA End-Repair/dA-Tailing master mix

5 Prepare the appropriate volume of End Repair/dA-Tailing master mix, using volumes listed in **Table 29** and using the liquid handling steps specified below.

Table 29 lists the required reagent volumes for 1 to 12 columns of samples. Make sure to use the volumes appropriate for your run.

a Vortex the thawed vial of End Repair-A Tailing Buffer for 15 seconds at high speed to ensure homogeneity. Visually inspect the solution; if any solids are observed, continue vortexing until all solids are dissolved.

CAUTION The End Repair-A Tailing Buffer used in this step must be mixed thoroughly by vortexing at high speed for 15 seconds before removing an aliquot for use. When combining with other reagents, mix well by pipetting up and down 15–20 times using a pipette set to at least 80% of the mixture volume.

- **b** Slowly pipette the End Repair-A Tailing Buffer into a 1.5-mL Eppendorf tube or conical vial, ensuring that the full volume is dispensed.
- **c** Slowly add the End Repair-A Tailing Enzyme Mix, rinsing the enzyme tip with buffer solution after addition. Mix well by pipetting up and down 15–20 times. (For large volumes, instead vortex at medium speed for 25–30 seconds to ensure homogeneity.) Spin briefly to collect the liquid and keep on ice.

Table 29 Preparation of End Repair/dA-Tailing master mix

Reagent	Volume for 1	for 1 Based on Number of Columns of Samples (1 to 12 Columns)											
	Library	1	2	3	4	5	6	7	8	9	10	11	12
End Repair-A Tailing Buffer (yellow cap or bottle)	16 µL	204.0	340.0	476.0	612.0	748.0	884.0	1042.7	1201.3	1360.0	1518.7	1677.3	1836.0
End Repair-A Tailing Enzyme Mix (orange cap)	4 µL	51.0	85.0	119.0	153.0	187.0	221.0	260.7	300.3	340.0	379.7	419.3	459.0
Total Volume	20 µL	255.0	425.0	595.0	765.0	935.0	1105.0	1303.4	1501.6	1700.0	1898.4	2096.6	2295.0

Prepare the Ligation master mix

6 Prepare the appropriate volume of Ligation master mix, using volumes listed in **Table 30** and using the liquid handling steps specified below.

Table 30 lists the required reagent volumes for 1 to 12 columns of samples. Make sure to use the volumes appropriate for your run.

a Vortex the thawed vial of Ligation Buffer for 15 seconds at high speed to ensure homogeneity.

CAUTION

The Ligation Buffer used in this step is viscous. Mix thoroughly by vortexing at high speed for 15 seconds before removing an aliquot for use. When combining with other reagents, mix well by pipetting up and down 15–20 times using a pipette set to at least 80% of the mixture volume.

- **b** Slowly pipette the Ligation Buffer into a 1.5-mL Eppendorf tube or conical vial, ensuring that the full volume is dispensed.
- **c** Slowly add the T4 DNA Ligase, rinsing the enzyme tip with buffer solution after addition. Mix well by slowly pipetting up and down 15–20 times. (For large volumes, instead vortex at medium speed for 25–30 seconds to ensure homogeneity.) Spin briefly to collect the liquid.

Table 30 Preparation of Ligation master mix

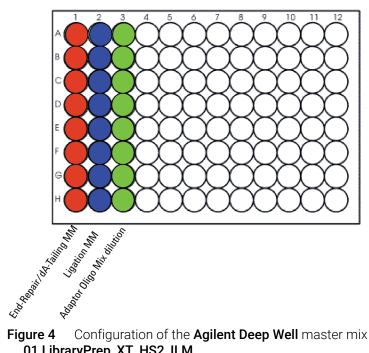
Reagent	Volume for 1	for 1 Based on Number of Columns of Samples (1 to 12 Columns)											
	Library	1	2	3	4	5	6	7	8	9	10	11	12
Ligation Buffer (purple cap or bottle)	23 µL	293.3	488.8	684.3	879.8	1075.3	1270.8	1515.1	1759.5	2003.9	2248.3	2492.6	2737.0
T4 DNA Ligase (blue cap)	2 µL	25.5	42.5	59.5	76.5	93.5	110.5	127.5	153.0	174.3	195.5	216.8	238.0
Total Volume	25 µL	318.8	531.3	743.8	956.3	1168.8	1381.3	1642.6	1912.5	2178.2	2443.8	2709.4	2975.0

Prepare the Adaptor Oligo Mix

7 Prepare the appropriate volume of Adaptor Oligo Mix dilution, according to **Table 31**. Mix well using a vortex mixer and keep on ice.

Table 31 lists the required reagent volumes for 1 to 12 columns of samples. Make sure to use the volumes appropriate for your run.

Table 31 Preparation of Adaptor Oligo Mix dilution


Reagent	Volume for 1			Ba	sed on N	umber of	Volun Columns	ne (µL) s of Samp	oles (1 to	12 Colun	nns)		
	Library	1	2	3	4	5	6	7	8	9	10	11	12
Nuclease-free water	2.5 µL	42.5	63.8	85.0	106.3	127.5	148.8	170.0	191.3	212.5	233.8	255.0	276.3
SureSelect XT HS2 Adaptor Oligo Mix (white cap)	5 µL	85.0	127.5	170.0	212.5	255.0	297.5	340.0	382.5	425.0	467.5	510.0	552.5
Total Volume	7.5 µL	127.5	191.3	255.0	318.8	382.5	446.3	510.0	573.8	637.5	701.3	765.0	828.8

Prepare the master mix source plate

8 Prepare the **Agilent Deep Well** master mix source plate containing the mixtures prepared in **step 5** through **step 7**. Add the volumes indicated in **Table 32** of each mixture to all wells of the indicated column of the Agilent Deep Well plate. Keep the master mixes on ice during the aliquoting steps. The final configuration of the master mix source plate is shown in **Figure 4**.

Master Mix Position Solution on Source		Volume (µL) of Master Mix added per Well of Agilent Deep Well Source Plate Based on Number of Columns in the Run (1 to 12 Columns)												
	Plate	1	2	3	4	5	6	7	8	9	10	11	12	
End Repair-dA Tailing master mix	Column 1 (A1-H1)	31.0	52.0	73.0	94.0	115.0	136.0	158.8	182.0	205.8	230.0	254.8	280.0	
Ligation master mix	Column 2 (A2-H2)	36.0	62.0	88.0	114.0	140.0	166.0	195.7	226.5	258.3	291.1	325.1	360.0	
Adaptor Oligo Mix dilution	Column 3 (A3-H3)	15.0	22.5	30.0	37.5	45.0	52.5	60.6	68.8	76.9	85.0	93.1	101.3	

Table 32 Preparation of the master mix source plate for 01 LibraryPrep_XT_HS2_ILM protocol

Configuration of the Agilent Deep Well master mix source plate for protocol 01 LibraryPrep_XT_HS2_ILM

- 9 Seal the master mix source plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.
- 10 Centrifuge the plate for 30 seconds to drive the well contents off the walls and plate seal and to eliminate any bubbles. Keep the master mix source plate on ice.

The presence of bubbles in source plate solutions may cause inaccurate volume transfer by the Bravo liquid handling platform. Ensure that the source plate is sealed and centrifuged prior to use in a run.

60

NOTE

Load the NGS Bravo

11 Load the Bravo deck according to Table 33.

Table 33 Initial Bravo deck configuration for 01 LibraryPrep_XT_HS2_ILM protocol

Location	Content
1	Processing plate (Eppendorf twin.tec or Armadillo plate) containing sheared gDNA samples
2	New tip box
3	Empty processing plate (Eppendorf twin.tec or Armadillo plate) for aliquots of Adaptor Oligo Mix
4	Empty red insert
5	Empty processing plate (Eppendorf twin.tec or Armadillo plate) for aliquots of End Repair-dA Tailing master mix
7	Empty processing plate (Eppendorf twin.tec or Armadillo plate) for aliquots of Ligation master mix
8	Empty tip box
9	Library Prep master mix source plate, unsealed

Run VWorks protocol 01 LibraryPrep_XT_HS2_ILM

- 12 On the SureSelect setup form, under **Select protocol to execute**, select the 01 LibraryPrep_XT_HS2_ILM protocol.
- 13 Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.
- 14 Select the number of columns of samples to be processed.
- 15 Click Display Initial Bravo Deck Setup.

🥑 Display Initial Bravo Deck Setup

- 16 Verify that the Bravo deck has been set up as displayed on the right side of the form.
- 17 Verify that the **Current Tip State** indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See **page 24** for more information on using this segment of the form during the run.
- 18 When verification is complete, click Run Selected Protocol.

Running the **01 LibraryPrep_XT_HS2_ILM** protocol takes approximately 1.5 hours. Once complete, the adaptor-ligated DNA samples are located in the selected processing plate at position 9 of the Bravo deck.

Stopping Point If you do not continue to the next step, seal the DNA sample plate and store at 4° C overnight or at -20° C for prolonged storage.

Step 4. Purify adaptor-ligated DNA using AMPure XP beads

This step uses automation protocol **02 Cleanup_LibPrep_XT_HS2_ILM**.

In this step the NGS Bravo combines the adaptor-ligated samples with AMPure XP beads and then collects and washes the bead-bound DNA.

Prepare the NGS Bravo and reagents for protocol 02 Cleanup_LibPrep_XT_HS2_ILM

- 1 Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- 2 Pre-set the temperature of Bravo deck positions 4 and 6 as indicated in **Table 34**. See **page 19** for more information on how to do this step.

Table 34 Bravo Deck Temperature Presets

Bravo Deck Position	Temperature Preset	Preset Method
4	45°C	Inheco Multi TEC control touchscreen (CPAC 2-1)
6	4°C	Inheco Multi TEC control touchscreen (CPAC 2-2)

3 Prepare an Agilent shallow well reservoir containing 30 mL of nuclease-free water. If available, use the same Agilent shallow well reservoir that was used in the 00b EnzFrag_Dil_XT_HS2_ILM protocol.

Make sure that the water in the reservoir does not contain bubbles. If bubbles are present, dislodge them with a clean pipette tip.

At the end of the automation protocol, you may retain the Agilent shallow well reservoir for use in the selected Cleanup_Pre-CapPCR protocol (see **"Step 6. Purify amplified DNA using AMPure XP beads"** on page 70) if you are running that protocol today.

4 Prepare an Agilent deep well reservoir containing 50 mL of freshly-prepared 70% ethanol.

Load the NGS Bravo

5 Load the Bravo deck according to Table 35.

Table 35 Initial Bravo deck configuration for 02 Cleanup_LibPrep_XT_HS2_ILM

Content
Empty waste plate (Agilent 2 mL square well)
New tip box
Aliquotted AMPure XP beads in Agilent Deep Well plate from page 38 (80 μL of beads/well)
Adaptor-tagged DNA samples in processing plate (Eppendorf twin.tec or Armadillo plate)
Empty tip box
70% ethanol reservoir from step 4

Run VWorks protocol 02 Cleanup_LibPrep_XT_HS2_ILM

- 6 On the SureSelect setup form, under **Select Protocol**, select the **02 Cleanup_LibPrep_XT_HS2_ILM** protocol.
- 7 Select the number of columns of samples to be processed.
- 8 Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.
- 9 Click Display Initial Bravo Deck Setup.

🥑 Display Initial Bravo Deck Setup

10 Verify that the Bravo deck has been set up as displayed on the right side of the form.

- 11 Verify that the **Current Tip State** indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See **page 24** for more information on using this segment of the form during the run.
- 12 When setup and verification is complete, click Run Selected Protocol.

Running the **02 Cleanup_LibPrep_XT_HS2_ILM** protocol takes approximately 40 minutes. An operator must be present during the run to complete tip box replacement and to transfer the water reservoir to the Bravo deck, when directed by the VWorks prompt shown below.

Replace reservoir
Remove the Ethanol Reservoir from Position 9. Place the Water reservoir at Position 9.
When finished, click Continue below.
User data entry:
Pause and Diagnose Continue

Once the protocol is complete, the purified DNA samples are located in the Agilent Deep Well plate at position 7 of the Bravo deck.

Step 5. Amplify adaptor-ligated libraries

This step uses automation protocol 03 Pre-CapPCR_XT_HS2_ILM.

In this step, the NGS Bravo completes the liquid handling steps for amplification and dual-indexing of the adaptor-ligated DNA samples. After the NGS Bravo completes the liquid-handling steps, you transfer the PCR plate to a thermal cycler for amplification.

This step uses the components listed in **Table 36**. Before you begin, thaw the reagents listed below and keep on ice. Before use, mix each component as directed.

Component	Storage Location	Mixing Method	Where Used
Herculase II Fusion DNA Polymerase (red cap)	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR), –20°C	Pipette up and down 15–20 times	page 66
5× Herculase II Reaction Buffer (clear cap)	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR), –20°C	Vortexing	page 66
SureSelect XT HS2 Index	SureSelect XT HS2 Index Primer Pairs for	Vortexing	page 66

Table 36 Reagents for pre-capture PCR amplification

* Indexing primer pairs are provided in a 96-well plate.

CAUTION

Primer Pairs

To avoid cross-contaminating libraries, set up PCR master mixes in a dedicated clean area or PCR hood with UV sterilization and positive air flow.

The SureSelect XT HS2 Index Primer Pairs are provided in single-use aliquots. To avoid cross-contamination of libraries, do not retain and re-use any residual volume in the plate for subsequent experiments.

Prepare the NGS Bravo for protocol 03 Pre-CapPCR_XT_HS2_ILM

ILM (Pre PCR),* -20°C

- 1 Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- 2 Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- 3 Pre-set the temperature of Bravo deck position 6 to 4°C using the Inheco Multi TEC control touchscreen, as described in Setting the Temperature of Bravo Deck Heat Blocks. Bravo deck position 6 corresponds to CPAC 2, position 2 on the Multi TEC control touchscreen.

Pre-program the thermal cycler for pre-capture PCR

4 Pre-program a thermal cycler (with the heated lid ON) with the program in **Table 37**. Start the program, then immediately pause the program, allowing the heated lid to reach temperature while you set up the automation run.

Segment	Number of Cycles	Temperature	Time
1	1	98°C	2 minutes
2	8 to 14, based on input DNA quality	98°C	30 seconds
	and quantity (see Table 38)	60°C	30 seconds
		72°C	1 minute
3	1	72°C	5 minutes
4	1	4°C	Hold

Table 37 Pre-Capture PCR Thermal Cycler Program*

* When setting up the thermal cycler program, use a reaction volume setting of 50 μ L.

Table 38 Pre-capture PCR cycle number recommendations

Quality of Input DNA	Quantity of Input DNA	Cycles
Intact DNA from fresh sample	100 to 200 ng	8 cycles
	50 ng	9 cycles
	10 ng	11 cycles
FFPE sample DNA	100 to 200 ng*	11 cycles
	50 ng	12 cycles
	10 ng	14 cycles

* qPCR-determined quantity of amplifiable DNA or DIN value-adjusted amount of input DNA

Prepare the SureSelect XT HS2 Index Primer Pairs

5 Using a multichannel pipette, transfer 5 μ L of each SureSelect XT HS2 Index Primer Pair from the 96-well plate in which the primer pairs are provided into the PCR plate to be used for the pre-capture PCR thermal cycling. Make sure to maintain the same well location for each primer pair when transferring to the PCR plate. Keep the PCR plate on ice.

The PCR plate containing the primer pairs is loaded onto the Bravo deck in **step 10** on **page 67** for the **03 Pre-CapPCR_XT_HS2_ILM** protocol.

Prepare the pre-capture PCR master mix and master mix source plate

6 Prepare the appropriate volume of pre-capture PCR master mix, according to **Table 39**. Vortex at medium speed for 15–20 seconds and keep on ice.

Table 39 Preparation of Pre-Capture PCR Master Mix

Reagent	Volume for 1	for 1 Based on Number of Columns of Samples (1 to 12 Columns)											
	Library	1	2	3	4	5	6	7	8	9	10	11	12
5× Herculase II Buffer with dNTPs (clear cap)	10 µL	170	255	340	425	510.0	574	656.0	738.0	820.0	902.0	984.0	1066
Herculase II Fusion DNA Polymerase (red cap)	1 μL	17	25.5	34	42.5	51.0	57.4	65.6	73.8	82.0	90.2	98.4	106.6
Total Volume	11 µL	187	280.5	374	467.5	561.0	631.4	721.6	811.8	902.0	992.2	1082.4	1172.6

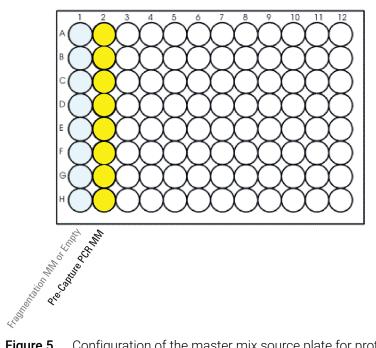

7 Using the same master mix source plate (Eppendorf twin.tec or Armadillo plate) that was used for the Fragmentation master mix in the **00a EnzFrag_XT_HS2_ILM** protocol, add the volume of PCR master mix indicated in **Table 40** to all wells of column 2 of the master mix source plate. If you did not use the enzymatic fragmentation method to fragment the DNA, then add the PCR master mix to column 2 of a fresh processing plate (either an Eppendorf twin.tec or an Armadillo plate, as indicated in the Processing Plate setting on the form). The final configuration of the master mix source plate is shown in **Figure 5**.


Table 40 Preparation of the master mix source plate for 03 Pre-CapPCR_XT_HS2_ILM protocol

Master Mix Solution	Position on Source	······································											
	Plate	1	2	3	4	5	6	7	8	9	10	11	12
Pre-Capture PCR Master Mix	Column 2 (A2-H2)	22	33	44	55	66	77	88	99	110	121	132	143

CAUTION

Make sure to add the Pre-Capture PCR master mix to column 2 of the source plate.

- 8 Seal the master mix source plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.
- **9** Centrifuge the plate for 30 seconds to drive the well contents off the walls and plate seal and to eliminate any bubbles.

The presence of bubbles in source plate solutions may cause inaccurate volume transfer by the Bravo liquid handling platform. Ensure that the source plate is sealed and centrifuged prior to use in a run.

Load the NGS Bravo

10 Load the Bravo deck according to Table 41.

Table 41 Initial Bravo deck configuration for 03 Pre-CapPCR_XT_HS2_ILM protocol

Location	Content
1	Empty waste plate (Agilent 2 mL square well)
2	New tip box
6	SureSelect XT HS2 Index Primer Pairs for ILM in PCR plate seated in red insert (PCR plate type must be specified on setup form under step 2)
7	Adaptor-ligated DNA samples in Agilent Deep Well plate
8	Empty tip box
9	Master mix source plate (Eppendorf twin.tec or Armadillo plate) containing PCR master mix in column 2 (unsealed)

NOTE

Run VWorks protocol 03 Pre-CapPCR_XT_HS2_ILM

- 11 On the SureSelect setup form, under **Select protocol to execute**, select the **03 Pre-CapPCR_XT_HS2_ILM** protocol.
- 12 Under Select labware for thermal cycling, select the specific type of PCR plate used at position 6 of the Bravo deck.
- 13 Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.
- 14 Select the number of columns of samples to be processed.
- 15 Click Display Initial Bravo Deck Setup.

🥑 Display Initial Bravo Deck Setup

- 16 Verify that the Bravo deck has been set up as displayed on the right side of the form.
- 17 Verify that the **Current Tip State** indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See **page 24** for more information on using this segment of the form during the run.
- 18 When verification is complete, click Run Selected Protocol.

Running the **03 Pre-CapPCR_XT_HS2_ILM** protocol takes approximately 10 minutes. Once complete, the PCR-ready samples, containing prepped DNA and PCR master mix, are located in the PCR plate at position 6 of the Bravo deck.

19 When you see the following prompt, remove the PCR plate from position 6 of the Bravo deck and seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 seconds.

Plate ready to seal							
Seal PCR plate and run thermocyder protocol.							
User data entry:							
Pause and Diagnose Continue]						

20 Centrifuge the plate for 30 seconds to drive the well contents off the walls and plate seal and to eliminate air bubbles.

21 Before adding the samples to the pre-programmed thermal cycler, bring the temperature of the thermal block to 98°C by resuming the thermal cycler program in **Table 37**. Once the cycler has reached 98°C, immediately place the sample plate in the thermal block and close the lid.

CAUTION

The lid of the thermal cycler is hot and can cause burns. Use caution when working near the lid.

Retain the master mix source plate (Eppendorf twin.tec or Armadillo plate) containing the Pre-Capture PCR master mix located at position 9 of the Bravo deck for later use in the **05 TS_D1000** protocol (see **"Option 1: Analysis using an Agilent 4200 TapeStation Instrument and D1000 ScreenTape"** on page 73).

Step 6. Purify amplified DNA using AMPure XP beads

This step uses either automation protocol **04a Cleanup_Pre-CapPCR_SP_XT_HS2_ILM** or **04b Cleanup_Pre-CapPCR_MP_XT_HS2_ILM**.

In this step, the NGS Bravo transfers amplified DNA to an Agilent Deep Well plate containing AMPure XP beads, and then collects and washes the bead-bound DNA.

This step uses the aliquoted plate of AMPure XP beads that was prepared on page 38.

Prepare the NGS Bravo and reagents for the Cleanup_Pre-CapPCR protocol

- 1 Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- 2 Pre-set the temperature of Bravo deck position 4 to 45°C using the Inheco Multi TEC control touchscreen, as described in Setting the Temperature of Bravo Deck Heat Blocks. Bravo deck position 4 corresponds to CPAC 2, position 1 on the Multi TEC control touchscreen.
- **3** Pre-set the temperature of Bravo deck position 6 to 4°C using the Inheco Multi TEC control touchscreen. Bravo deck position 6 corresponds to CPAC 2, position 2 on the Multi TEC control touchscreen.
- 4 Prepare an Agilent shallow well reservoir containing 30 mL of nuclease-free water. If available, use the same Agilent shallow well reservoir that was used in the 02 Cleanup_LibPrep_XT_HS2_ILM protocol.

Make sure that the water in the reservoir does not contain bubbles. If bubbles are present, dislodge them with a clean pipette tip.

At the end of the automation protocol, you may retain the water reservoir for use in either the **06a Aliquot_Libraries** or **06b Aliquot_Water** protocol (see **"Step 1. Prepare DNA for Hybridization"** on page 80) if you are running one of those protocols today.

5 Prepare an Agilent Deep Well reservoir containing 50 mL of freshly-prepared 70% ethanol.

Load the NGS Bravo

6 Load the Bravo deck according to **Table 42**.

Table 42 Initial Bravo deck configuration for the 04a Cleanup_Pre-CapPCR_SP_XT_HS2_ILM or 04b Cleanup_Pre-CapPCR_MP_XT_HS2_ILM protocol

Location	Content
1	Empty waste plate (Agilent 2 mL square well)
2	New tip box
3	Empty processing plate (Eppendorf twin.tec or Armadillo plate)
5	Aliquotted AMPure XP beads in Agilent Deep Well plate from page 38 (50 μL of beads/well)
6	Amplified DNA libraries in unsealed PCR plate seated in red insert (PCR plate type must be specified on setup form under step 2)
8	Empty tip box
9	70% ethanol reservoir from step 5

Run the appropriate Cleanup_Pre-CapPCR protocol

- 7 On the SureSelect setup form, under **Select protocol to execute**, select one of the Cleanup_Pre-CapPCR protocols based on your workflow of choice.
 - If you are using the post-capture pooling workflow (i.e., pooling samples after hybridization with the Probe) then select the protocol **04a Cleanup_Pre-CapPCR_SP_XT_HS2_ILM**.
 - If you are using the pre-capture pooling workflow (i.e., pooling samples prior to hybridization with the Probe) then select the protocol
 04b Cleanup_Pre-CapPCR_MP_XT_HS2_ILM.

The 04a and 04b protocols use different elution volumes. Selecting the correct option is important for the downstream hybridization protocol.

- 8 Under Select labware for thermal cycling, select the specific type of PCR plate containing the amplified libraries at position 9.
- 9 Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.
- 10 Select the number of columns of samples to be processed.
- 11 Click Display Initial Bravo Deck Setup.

Display Initial Bravo Deck Setup

- 12 Verify that the Bravo deck has been set up as displayed on the right side of the form.
- 13 Verify that the **Current Tip State** indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See **page 24** for more information on using this segment of the form during the run.
- 14 When verification is complete, click Run Selected Protocol.

The purification protocol takes approximately 40 minutes. An operator must be present during the run to complete tip box replacement and to transfer the water reservoir to the Bravo deck, when directed by the VWorks prompt shown below.

Replace reservoir	
Remove the Ethanol Re Position 9. Place the Water reserve	
When finished, click Cor	ntinue below.
User data entry:	
Pause and Diagnose	<u>C</u> ontinue

When complete, the purified DNA samples are in the selected processing plate located on Bravo deck position 3.

Step 7. Assess Library DNA quantity and quality

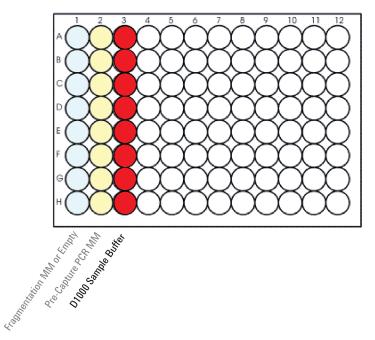
Sample analysis can be completed using one of two options.

- Option 1: Prepare the analytical assay plate using automation (protocol 05 TS_D1000) and perform analysis on Agilent 4200 TapeStation. See "Option 1: Analysis using an Agilent 4200 TapeStation Instrument and D1000 ScreenTape" on page 73.
- Option 2: Prepare the analytical samples manually and perform analysis on Agilent 2100 Bioanalyzer, Agilent 4200 or 4150 TapeStation or Agilent 5200 Fragment Analyzer. See "Option 2: Analysis using an equivalent platform (non-automated)" on page 77.

Option 1: Analysis using an Agilent 4200 TapeStation Instrument and D1000 ScreenTape

This section describes use of automation protocol **05 TS_D1000** to prepare the D1000 assay sample plate by combining 2 μ L of each DNA sample with 6 μ L of D1000 sample buffer. Afterward, you transfer the prepared assay plate to the 4200 TapeStation instrument for analysis. For more information to do this step, see the Agilent D1000 Assay Quick Guide for 4200 TapeStation System.

Allow the reagents to equilibrate to room temperature for 30 minutes prior to use.


Prepare the NGS Bravo and Sample Buffer source plate for protocol 05 TS_D1000

- 1 Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- 2 Turn off the ThermoCube device (see **page 22**) to restore position 9 of the Bravo deck to room temperature.
- 3 Pre-set the temperature of Bravo deck position 4 to 4°C using the Inheco Multi TEC control touchscreen, as described in Setting the Temperature of Bravo Deck Heat Blocks. Bravo deck position 4 corresponds to CPAC 2, position 1 on the Multi TEC control touchscreen.
- 4 Using the same processing source plate (Eppendorf twin.tec or Armadillo plate) that was used in the 03 Pre-CapPCR_XT_HS2_ILM protocol, prepare the Sample Buffer source plate at room temperature. Add the volume of D1000 Sample Buffer indicated in Table 43 to each well of column 3 of the plate.

Make sure to add the D1000 Sample Buffer to column 3 of the source plate.

Table 43 Preparation of the Sample Buffer source plate for TS_D1000 protocol

Solution		Volume (μL) of Sample Buffer added per Well of Processing Source Plate Based on Number of Columns in the Run (1 to 12 Columns)											
	Plate	1	2	3	4	5	6	7	8	9	10	11	12
D1000 Sample Buffer	Column 3 (A3-H3)	11.0	17.0	23.0	29.0	35.0	41.0	47.0	53.0	59.0	65.0	71.0	77.0

Figure 6 Configuration of the processing source plate for protocol **05 TS_D1000**. The master mixes dispensed during previous protocols are shown in light shading.

Load the NGS Bravo

5 Load the Bravo deck according to Table 44.

Table 44 Initial Bravo deck configuration for TS_D1000 protocol

Location	Content	
2	New tip box	
4	Amplified pre-capture libraries in Eppendorf twin.tec or Armadillo plate (unsealed)	
6	Empty TapeStation analysis plate (Agilent p/n 5042-8502)	
8	Empty tip box	
9	Processing source plate (Eppendorf twin.tec or Armadillo plate) containing D1000 Sample Buffer in Column 3	

CAUTION

To prevent damage to the Agilent 4200 TapeStation instrument and the Agilent NGS Bravo, use only the specified Agilent plates (Agilent p/n 95042-8502) for automated assay plate preparation.

The Agilent 2200 TapeStation system does not support use of these plates. Do not load sample plates prepared using the automated protocol in the 2200 TapeStation instrument.

Run VWorks protocol 05 TS_D1000

- 6 On the SureSelect setup form, under Select protocol to execute, select 05 TS_D1000.
- 7 Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.

- 8 Select the number of columns of samples to be processed.
- 9 Click Display Initial Bravo Deck Setup.

🧭 Display Initial Bravo Deck Setup

- 10 Verify that the Bravo deck has been set up as displayed on the right side of the form.
- 11 Verify that the **Current Tip State** indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See **page 24** for more information on using this segment of the form during the run.
- 12 When verification is complete, click Run Selected Protocol.

Running the **05 TS_D1000** protocol takes approximately 10 minutes. Once removal of analytical samples is complete, remove the primary DNA library sample plate from position 4, seal the plate, and keep on ice until the samples are used for hybridization set up on **page 82**.

13 When prompted by VWorks as shown below, remove the TapeStation analysis plate containing the analytical samples from position 6 of the Bravo deck, then click **Continue**. Seal the D1000 assay plate with a foil seal and vortex the sealed plate as directed in the Agilent D1000 Assay Quick Guide for 4200 TapeStation System.

Plate ready to seal	
Seal analysis plate and vortex as per TapeStation user guide.	
User data entry:	
Pause and Diagnose Continue	

CAUTION

To prevent damage to the Agilent 4200 TapeStation instrument, use only the specified 96-well plate foil seals (Agilent p/n 5067-5154).

For accurate quantitation, make sure that you thoroughly mix the combined DNA and sample buffer on a vortex mixer for 1 minute, then spin briefly to collect the liquid.

Run the D1000 Assay and analyze the data

- 14 Load the analytical sample plate, the D1000 ScreenTape, and loading tips into the TapeStation instrument as instructed in the D1000 Assay Quick Guide. Start the run.
- 15 Verify that the electropherogram shows the expected DNA fragment size peak position (see Table 45 for guidelines). Sample electropherograms are shown in Figure 7 (library prepared from high-quality DNA), Figure 8 (library prepared from medium-quality FFPE DNA), and Figure 9 (library prepared from low-quality FFPE DNA).

The appearance of an additional low molecular weight peak indicates the presence of adaptor-dimers in the library. It is acceptable to proceed to target enrichment with library samples for which adaptor-dimers are observed in the electropherogram at low abundance, similar to that seen in the example electropherogram in **Figure 9**. See Troubleshooting information on **page 162** for additional considerations.

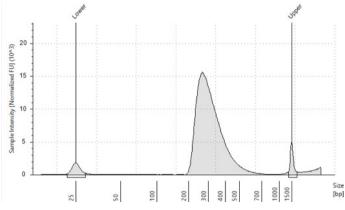

NGS read length for fragmentation protocol selection	Fragmentation method	Input DNA type	Expected library DNA fragment size peak position
2 × 100 reads	Mechanical shearing	Intact DNA	300 to 400 bp
		FFPE DNA	200 to 400 bp
	Enzymatic fragmentation	Intact DNA	300 to 400 bp
		FFPE DNA	200 to 400 bp
2 × 150 reads	Mechanical shearing	Intact DNA	330 to 450 bp
		FFPE DNA	200 to 450 bp
	Enzymatic fragmentation	Intact DNA	330 to 450 bp
		FFPE DNA	200 to 450 bp

Table 45 Pre-capture library qualification guidelines

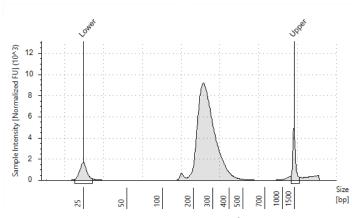

16 Determine the concentration of the library DNA by integrating under the peak.

Figure 7 Pre-capture library prepared from a high-quality gDNA sample analyzed using a D1000 ScreenTape assay.

Figure 8 Pre-capture library prepared from a typical FFPE gDNA sample analyzed using a D1000 ScreenTape assay.

Figure 9 Pre-capture library prepared from a low-quality FFPE gDNA sample analyzed using a D1000 ScreenTape assay.

Stopping Point If you do not continue to the next step, seal the sample wells and store at 4° C overnight or at -20° C for prolonged storage.

Option 2: Analysis using an equivalent platform (non-automated)

Using manual preparation of the analytical sample plate, you can analyze the DNA samples on Agilent 2100 BioAnalyzer, Agilent 5200 Fragment Analyzer, or Agilent 4200/4150 TapeStation. Electropherograms obtained using one of these other analysis platforms are expected to show fragment size profiles similar to those shown for the Agilent 4200 TapeStation (see **Figure 7** through **Figure 9**). Verify that the electropherogram shows the expected DNA fragment size peak position (see **Table 45** for guidelines). **Table 46** includes links to assay instruction.

Table 46 Pre-capture library analysis options

Analysis platform	Assay used at this step	Link to assay instructions	Amount of library sample to analyze
Agilent 4200/4150 TapeStation system	D1000 ScreenTape	Agilent D1000 Assay Quick Guide	1 μL of sample mixed with 3 μL of D1000 sample buffer
Agilent 2100 BioAnalyzer system	DNA 1000 Kit	Agilent DNA 1000 Kit Guide	1 μ L of sample
Agilent 5200, 5300, or 5400 Fragment Analyzer system	NGS Fragment Kit (1-6000 bp)	Agilent NGS Fragment Kit (1-6000 bp) Guide	$2\mu\text{L}$ of sample

Stopping Point If you do not continue to the next step, seal the sample wells and store at 4° C overnight or at -20° C for prolonged storage.

SureSelect XT HS2 DNA System Protocol

5 Hybridization

CAUTION

Step 1. Prepare DNA for Hybridization 80
Option 1: Single-plex hybridization 80
Option 2: Multi-plex hybridization 83
Step 2. Hybridize the gDNA library or library pool and probe 93
Step 3. Capture the hybridized DNA 103
Step 4. Wash the captured DNA 107

This chapter describes the steps to complete the hybridization and capture steps using a SureSelect or ClearSeq Probe.

The ratio of probe to prepped library is critical for successful capture.

Step 1. Prepare DNA for Hybridization

The first step is to prepare the DNA libraries for hybridization, and this step differs depending on the sample pooling strategy.

- If you are pooling samples after hybridization to the Probe, then follow the steps in **"Option 1: Single-plex hybridization"** on page 80.
- If you are pooling samples prior to hybridization to the Probe, then follow the steps in "Option 2: Multi-plex hybridization" on page 83.

Option 1: Single-plex hybridization

This step uses automation protocol 06a Aliquot_Libraries.

Follow the steps in this section if you are using the post-capture pooling workflow. If you are using the pre-capture pooling workflow, see **"Option 2: Multi-plex hybridization"** on page 83.

For each sample library prepared, do one hybridization and capture.

The hybridization reaction requires 500–1000 ng of prepared DNA in a volume of 12 μ L. Use the maximum amount of prepared DNA available within this range.

Calculate sample volumes needed for hybridization

1 Using the DNA concentration for each sample determined on **page 73** to **page 77**, calculate the volume of each sample to be used for hybridization using the formula below:

Volume (μ L) = 1000 ng/concentration (ng/ μ L)

If the concentration of any sample is not sufficient to allow use of the recommended 1000 ng of DNA, use the full remaining volume of DNA sample (approximately 10 to 12 μ L, containing at least 500 ng) for the hybridization step.

The automation protocol **06a Aliquot_Libraries** is used to prepare a new sample plate containing the appropriate quantity of each DNA sample for hybridization. Before running the automation protocol, you must create a table containing instructions for the NGS Bravo indicating the volume of each sample to aliquot, as described in the steps below.

Prepare .csv file for sample normalization and aliquoting

- 2 Create a .csv (comma separated value) file with the headers shown in Figure 10. The header text must not contain spaces. The table may be created using a spreadsheet application, such as Microsoft Excel software, and then saved in .csv format. The file must include rows for all 96 wells of the plate.
- **3** Enter the information requested in the header for each DNA sample.
 - In the SourceBC field, enter the sample plate description or barcode. The SourceBC field contents must be identical for all rows.
 - In the SourceWell and DestinationWell fields, enter each well position for the plate. SourceWell and DestinationWell field contents must be identical for a given sample.

In the Volume field, enter the volume (in μ L) of each DNA sample to be used in the hybridization step (see **page 80** for guidelines). For all empty wells on the plate, delete the corresponding rows in the .csv file.

	А	В	С	D
1	SourceBC	SourceWell	DestinationWell	Volume
2	abc	A1	A1	5.35
3	abc	B1	B1	4.28
4	abc	C1	C1	5.19
5	abc	D1	D1	4.76
6	abc	E1	E1	5.19
7	abc	F1	F1	5.49
8	abc	G1	G1	4.86
9	abc	H1	H1	5.05
10	abc	A2	A2	4.37

Figure 10 Sample spreadsheet for 1-column run

NOTE

You can find a sample spreadsheet in the directory C:\VWorks Workspace\NGS Option A\ XT_HS2_ILM_v.Ax.x.x\Aliquot Input File Templates\Aliquot_Libraries_Template.csv (where x.x.x is the version number).

The Aliquot_Libraries_template.csv file may be copied and used as a template for creating the .csv files for each Aliquot_Libraries protocol run. If you are using the sample file as a template for runs with fewer than 12 columns, be sure to delete rows for any unused columns on the plate.

4 Load the .csv file onto the PC containing the VWorks software into a suitable directory, such as C:\VWorks Workspace\NGS Option A\XT_HS2_ILM_v.Ax.x.x\Aliquot Input File Templates.

Prepare the NGS Bravo and reagents for protocol 06a Aliquot_Libraries

- **5** Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- **6** Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- 7 Prepare an Agilent shallow well reservoir containing 30 mL of nuclease-free water. If available, use the same Agilent shallow well reservoir that was used in the Cleanup_Pre-CapPCR protocol (04a or 04b).

Make sure that the water in the reservoir does not contain bubbles. If bubbles are present, dislodge them with a clean pipette tip.

At the end of the automation protocol, you may retain the Agilent shallow well reservoir for use in the **09 SSELWash_XT_HS2_ILM** protocol (see **"Step 4. Wash the captured DNA"** on page 107) if you are running that protocol today.

Load the NGS Bravo

8 Load the Bravo deck according to Table 47.

Table 47 Initial Bravo deck configuration for 06a Aliquot_Libraries protocol

Location	Content
2	Nuclease-free water reservoir from step 7
5	Empty processing plate (Eppendorf twin.tec or Armadillo plate)
6	Empty tip box
8	New, unused tip box [*]
9	Prepped library DNA in destination plate (Eppendorf twin.tec or Armadillo plate)

* The **06a Aliquot_Libraries** protocol does not use the Current Tip State indicator. The tip box at position 8 must be new and full of unused tips.

Run VWorks protocol 06a Aliquot_Libraries

- 9 On the SureSelect setup form, under **Select protocol to execute**, select the **06a Aliquot_Libraries** protocol.
- 10 Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.
- 11 Click Display Initial Bravo Deck Setup.

🥑 Display Initial Bravo Deck Setup

- 12 Verify that the Bravo deck has been set up as displayed on the right side of the form.
- 13 Upload the .csv file created in step 2 through step 4.
 - a Click the "..." button below Select Aliquot Input File to open a directory browser window.

b Browse to the location where you saved the .csv file. Select the file and click **Open**.

The directory browser window closes, returning you to the SureSelect setup form. The selected file location is listed in the field below **Select Aliquot Input File**.

14 When verification is complete, click Run Selected Protocol.

The library aliquoting protocol takes approximately 1 hour for 96 samples. When complete, the DNA sample plate is on Bravo deck position 5.

15 Remove the sample plate from the Bravo deck. Proceed directly to "Step 2. Hybridize the gDNA library or library pool and probe" on page 93.

Option 2: Multi-plex hybridization

This step uses automation protocols **PreCapture_Pooling** (accessed from the XT_HS2_Pooling VWorks form), **06b Aliquot_Water**, and **06c PoolingConcentration_XT_HS2_ILM**.

- The PreCapture_Pooling protocol pools the prepped indexed gDNA samples using automation protocol PreCapture_Pooling, which is set up using the XT_HS2_Pooling VWorks form, shown below. This form is accessible from within the XT_HS2_ILM form.
- The **06b Aliquot_Water** protocol adds enough water to each DNA library pool to bring the volume to 100 μ L.
- Then, 06c PoolingConcentration_XT_HS2_ILM protocol uses AMPure XP beads (prepared on page 40) to purify the DNA library pools, eluting the DNA in a volume of 24 μL.

Follow the steps in this section if you are using the pre-capture pooling workflow. If you are using the post-capture pooling workflow, see **"Option 1: Single-plex hybridization"** on page 80.

Plan pooling run parameters

The hybridization reaction requires 1500 ng indexed gDNA (or 3000 ng of indexed gDNA if using one of the SureSelect XT HS PreCap Human All Exon V8 Probes). The indexed gDNA is made up of a pool that contains equal amounts of 8 or 16 individual libraries. See **Table 48** for the recommended pool composition based on your SureSelect or ClearSeq Probe.

Table 48	Pre-capture	pooling	of indexed	DNA libraries
----------	-------------	---------	------------	---------------

Probe	Amount of total DNA per pool (Amount of DNA pool per hybridization reaction) [*]	Number of indexed gDNA libraries per pool	Amount of each indexed gDNA library in pool	Maximum DNA concentration for pool
SureSelect XT HS PreCap Human All Exon V8 Probe	6000 ng (3000 ng/hybridization)	8	750 ng	375 ng/μL
SureSelect XT HS PreCap Human All Exon V8+UTR Probe	6000 ng (3000 ng/hybridization)	8	750 ng	375 ng/µL
SureSelect XT HS PreCap Human All Exon V8+NCV Probe	6000 ng (3000 ng/hybridization)	8	750 ng	375 ng/µL
SureSelect Custom Probe	3000 ng (1500 ng/hybridization)	16	187.5 ng	93.75 ng/µL
ClearSeq Comprehensive Cancer	3000 ng (1500 ng/hybridization)	16	187.5 ng	93.75 ng/µL
SureSelect Human or Mouse All-Exon	3000 ng (1500 ng/hybridization)	8	375 ng	187.5 ng/µL
SureSelect Clinical Research Exome	3000 ng (1500 ng/hybridization)	8	375 ng	187.5 ng/µL
SureSelect Focused Exome	3000 ng (1500 ng/hybridization)	8	375 ng	187.5 ng/µL
ClearSeq Inherited Disease	3000 ng (1500 ng/hybridization)	8	375 ng	187.5 ng/µL

* Where possible, indexed DNA pools are prepared containing a total DNA amount that is enough for two hybridization reactions, i.e., 6000 ng for hybridizations with one of the SureSelect XT HS PreCap Human All Exon V8 Probes (V8, V8+UTR, or V8+NCV) and 3000 ng for all other probes. For some indexed DNA pools, the initial library pool will contain enough total DNA for more than two hybridization reactions.

Before setting up the pooling run, you must determine the total amount of DNA to pool and the volumes of the pools based on the starting concentrations of the DNA samples to be pooled.

Accurate normalization of pools requires a minimum pipetting volume of 2 μ L for each sample. Maximum DNA concentration values for a pool containing >2 μ L of each sample are shown in **Table 48**, above. When higher-concentration DNA samples are included in the pooling run, the DNA pool amount must be adjusted as described below.

- Check the DNA concentration of each sample in the set of source plates to be pooled to a single destination plate to determine the appropriate amount of DNA per pool.
 - If all samples contain DNA at concentrations below the maximum DNA concentration shown in Table 48, then prepare 3000 ng DNA pools (or a 6000 ng pool if using one of the SureSelect XT HS PreCap Human All Exon V8 Probes).
 - If at least one of the samples is above the maximum DNA concentration shown in **Table 48**, then you need to calculate the appropriate DNA pool amount. First, identify the most concentrated DNA sample and calculate the amount of DNA contained in 2 μ L of that sample. This becomes the amount of each DNA sample used for pooling in the run. For example, if the highest DNA sample concentration is 200 ng/ μ L, then the final DNA pool will contain 400 ng of each indexed DNA. Next, determine the total amount of DNA per pool, based on the Probe size. Continuing with the same example, a Focused Exome capture pool would contain 8 × 400 ng, or 3200 ng DNA.

Plan destination indexed DNA pool sample plate configuration

The indexed gDNA samples should be pooled into the destination plate using a pooled sample configuration appropriate for the subsequent hybridization run. Use the following plate configuration considerations for pooling gDNA samples for automated hybridization and capture runs:

- When using a single Probe for all wells on the plate, fill the plate column-wise in well order A1 to H1, then A2 to H2, ending with A12 to H12.
- When using multiple Probes, configure the plate such that all gDNA library pools to be hybridized to a particular Probe are positioned in appropriate rows. When preparing for the 07 Hyb_XT_HS2_ILM protocol, place samples to be enriched using the same Probe in the same row.
- Each 96-reaction library preparation run produces 6 or 12 gDNA pools. For greatest efficiency of reagent use, gDNA pools from multiple library preparation runs may be placed on the same destination plate for hybridization.

Prepare .csv files for pooling and normalization

Before starting the sample pooling automation protocol, you must create comma-separated value (.csv) files containing instructions including the specific wells to be pooled and the concentration of each sample. From this data, the NGS Bravo calculates the volume of each sample required to prepare each concentration-normalized pool for the hybridization step.

See Figure 11 for required .csv file content. Pooling and normalization .csv file templates are provided in the following directory: C:\VWorks Workspace\NGS Option A\XT_HS2_ILM_v.Ax.x.x\ Pooling and Normalization Templates.

- 1 Select the appropriate set of templates from the directory based on the intended pool composition (8 or 16 prepared samples) and on the number of source plates to be consolidated in the run to prepare the single destination plate containing the hybridization samples. For example, for 8-library pools, use the template Pool8_01_SourcePlate.csv for the first DNA source plate, continuing with additional Pool8_0X_SourcePlate.csv files for additional DNA source plates.
- 2 Copy and rename the appropriate set of .csv file templates for the run. Make sure to retain the header text used in the template files, without introducing spaces or other new characters.

If processing a partial plate of prepped gDNA samples, delete the rows corresponding to the WellIDs of the empty wells on the plate.

	А	В	С
1	Well ID	PreCap Amplified pond concentrations (ng/ul)	Target WellID
2	A1	52.79	A1
3	B1	49.21	A1
4	C1	38.73	A1
5	D1	43.56	A1
6	E1	39.7	A1
7	F1	45.33	A1
8	G1	53.38	A1
9	H1	48.91	A1
10	A2	40.74	B1
11	B2	37.22	B1
12	C2	42.03	B1

Figure 11 Sample pooling and normalization .csv file content

- 3 In each .csv file, edit the information for each DNA sample (well ID) as follows:
 - In the **PreCap Amplified pond concentrations** field, enter the concentration (in $ng/\mu L$) determined on **page 73** for each indexed DNA sample.
 - In the Target WellID field, enter the well position of the pool in which the indexed DNA sample should be included for the destination plate. See the guidelines on page 84 for hybridization sample pool placement considerations.

Set up and run the PreCapture_Pooling automation protocol

- 1 Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- 2 Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- **3** To set up the **PreCapture_Pooling** automation protocol, open the VWorks Form XT2_HS2_Pooling using one of the methods below.
 - Double-click the shortcut on your desktop for the XT2_HS2_Pooling VWorks Form.
 - In the directory C:\VWorks Workspace\NGS Option A\XT_HS2_ILM_v.Ax.x.x\Forms (where x.x.x is the version number) open the file XT_HS2_Pooling_v.Ax.x.x.VWForm.
 - From the XT_HS2_ILM VWorks Form, under Controls, click Pooling Form.

- 4 In the XT2_HS2_Pooling Form, enter the run information highlighted below:
 - Under Pooling Options, from Number of Indexes to Pool menu, select 8 or 16 (see Table 48 on page 84 for guidelines).
 - Under Pooling Options, from Pooled DNA Quantity menu, enter the required total amount of DNA in the pool. For the SureSelect XT HS Human All Exon V8 Probes, the required amount is 6000 ng. For all other Probes, the typical amount is 3000 ng. These amounts are sufficient for two hybridization reactions. See page 83 for guidelines.
 - Under Destination Plate ID/Barcode, enter the name or barcode of the destination plate into the field provided.
 - Under Source Plates, from Number of Source Plates menu, select the number of indexed DNA source plates to be provided for sample pooling. If >8 plates will be used to create a single hybridization sample plate, run the pooling and normalization protocol in sets of 8 source plates.
 - In the table under **Source Plates**, in **Concentration File** field, use the browse button to specify the location of each .csv file that provides sample position and concentration data for each plate.

	Pooling Options						
Number of Indexes to Pool (8 or 16): 8							
	Pooled DNA Quantity [ng] (2 Hyb): 3000 - 3000ng or 6000ng (All Exon V8)						
Des	Destination Plate ID/Barcode						
Numbe	Source Plates Number of Source Plates: 1						
	Concentration File	ID/Barcode					
Plate	Concentration File	ID/Barcode					
Plate 1	Concentration File	ID/Barcode Source1					
Plate							
Plate 1							
Plate 1 2	· · · · · · · · · · · · · · · · · · ·						
Plate 1 2 3							
Plate 1 2 3 4							
Plate 1 2 3 4 5							

- 5 Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.
- 6 When finished entering run parameters in the Form, click **Display Setup**.
- 7 Load sample plates and labware as displayed on the right side of the form:
 - Load the first indexed DNA source plate on Bravo deck position 9. (If you are processing more than one source plate, you are prompted to load the subsequent source plates during the **PreCapture_Pooling** protocol.)
 - Load an empty destination plate (Eppendorf twin.tec or Armadillo plate, as indicated in the Processing Plate setting on the form) on Bravo deck position 5.
 - Load an empty tip box on Bravo deck position 6.
 - Load a new tip box on Bravo deck position 8.

	Bravo Deck	
1	2	3
4: Peltier	5: Shaker Destination Plate: Destination1	6: Peltier Empty Tip Box
7: Magnet	8 New Tip Box	9: Chiller 0°C Source Plate: Source1

8 When verification is complete, click **Run Protocol**.

CAUTION

When more than one indexed DNA source plate is used in the run, an operator must be present during the run to remove and replace tip boxes and source plates during the run, in response to NGS Bravo prompts like the one shown below.

Change Tips and Source Plate
 Remove filled used tips box from Bravo Position 6. Move empty tip box from Bravo Position 8 to Position 6. Place new tip box at Bravo Position 8. Remove source plate from Bravo Position 9 and seal the plate. Place new source plate at Bravo Position 9 and unseal the plate. Click continue.
User data entry:
Pause and Diagnose Continue

Running the **PreCapture_Pooling** protocol takes approximately one hour per indexed DNA source plate. Once complete, the destination sample plate, containing indexed DNA pools, is located at position 5 of the Bravo deck.

- 9 Remove the destination plate from Bravo deck position 5.
- **10** Seal the destination plate containing the indexed DNA pool samples using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec. Keep on ice.
- 11 In the XT_HS2_Pooling VWorks form, under **Controls**, click **XT HS2 DNA** to return to the XT_HS2_ILM VWorks form. The remaining automation protocols are executed from the XT_HS2_ILM VWorks form.

Prepare .csv file for normalizing pooled DNA sample volumes to 100 μ L

12 Create a .csv (comma separated value) file with the headers shown in Figure 12. The header text must not contain spaces. The table may be created using a spreadsheet application, such as Microsoft Excel software, and then saved in .csv format. The file must include rows for all 96 wells of the plate.

13 Enter the information requested in the header for each DNA sample.

- In the SourceBC field, enter the sample plate description or barcode. The SourceBC field contents must be identical for all rows.
- In the SourceWell and DestinationWell fields, enter each well position for the plate. SourceWell and DestinationWell field contents must be identical for a given sample.
- In the Volume field, enter the volume (in μ L) of water to be added to the sample in the indicated well position in order to bring the total well volume to 100 μ L. For all empty wells on the plate, delete the corresponding rows in the .csv file.

	Α	В	С	D
1	SourceBC	SourceWell	DestinationWell	Volume
2	abc	A1	A1	5.5
3	abc	B1	B1	5.2
4	abc	C1	C1	11
5	abc	D1	D1	5.9
6	abc	E1	E1	17.5
7	abc	F1	F1	5.5
8	abc	G1	G1	23
9	abc	H1	H1	5.6
10	abc	A2	A2	5.4

Figure 12 Sample Aliquot_Water .csv file content

NOTE

You can find a sample spreadsheet in the directory C:\VWorks Workspace\NGS Option A\ XT_HS2_ILM_v.Ax.x.\Aliquot Input File Templates (where x.x.x is the version number).

The Aliquot_Water_Template.csv file may be copied and used as a template for creating the .csv file for each **06b Aliquot_Water** protocol run. If you are using the sample file as a template for runs with fewer than 12 columns, be sure to delete rows for any unused columns on the plate.

14 Load the .csv file onto the PC containing the VWorks software into a suitable directory, such as C:\VWorks Workspace\XT_HS2_ILM_v.Bx.x.x\Pooling and Normalization Templates.

Prepare the NGS Bravo and reagents for protocol 06b Aliquot_Water

- **15** Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- **16** Prepare an Agilent shallow well reservoir containing 30 mL of nuclease-free water. If available, use the same Agilent shallow well reservoir that was used in the Cleanup_Pre-CapPCR protocol (04a or 04b).

Make sure that the water in the reservoir does not contain bubbles. If bubbles are present, dislodge them with a clean pipette tip.

At the end of the automation protocol, you may retain the Agilent shallow well reservoir for use in the **O6c PoolingConcentration_XT_HS2_ILM** protocol if you are running that protocol today.

Load the NGS Bravo

17 Load the Bravo deck according to Table 49.

Table 49 Initial Bravo deck configuration for 06b Aliquot_Water protocol

Location	Content
5	Pooled library DNA in processing plate (Eppendorf twin.tec or Armadillo plate)
6	Empty tip box
8	New, unused tip box [*]
9	Nuclease-free water reservoir from step 16

* The **06b Aliquot_Water** protocol does not use the Current Tip State indicator. The tip box at position 8 must be new and full of unused tips.

Run VWorks protocol 06b Aliquot_Water

- 18 On the SureSelect setup form, under **Select protocol to execute**, select the **06b Aliquot_Water** protocol.
- **19** Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.
- 20 Click Display Initial Bravo Deck Setup.

🥑 Display Initial Bravo Deck Setup

- 21 Verify that the Bravo deck has been set up as displayed on the right side of the form.
- 22 When verification is complete, click Run Selected Protocol.

23 When prompted, browse to the .csv file created for the source plate of the current run in step 4, and then click **OK** to start the run.

The water aliquoting protocol takes approximately 1 hour for 96 sample pools. When complete, the DNA sample plate is on Bravo deck position 5.

24 Remove the sample plate from the Bravo deck.

25 Seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.

Prepare the NGS Bravo and reagents for protocol 06c PoolingConcentration_XT_HS2_ ILM

- **26** Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- 27 Pre-set the temperature of Bravo deck position 4 to 45°C using the Inheco Multi TEC control touchscreen, as described in Setting the Temperature of Bravo Deck Heat Blocks. Bravo deck position 4 corresponds to CPAC 2, position 1 on the Multi TEC control touchscreen.
- **28** Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- **29** Prepare an Agilent shallow well reservoir containing 30 mL of nuclease-free water. If available, use the same Agilent shallow well reservoir that was used in the **06b Aliquot_Water** protocol.

Make sure that the water in the reservoir does not contain bubbles. If bubbles are present, dislodge them with a clean pipette tip.

30 Prepare an Agilent deep well reservoir containing 50 mL of freshly-prepared 70% ethanol.

Load the NGS Bravo

31 Load the Bravo deck according to Table 50.

Table 50 Initial Bravo deck configuration for 06c PoolingConcentration_XT_HS2_ILM protocol

Location	Content
1	Empty waste plate (Agilent 2 mL square well)
2	New tip box
3	Empty processing plate (Eppendorf twin.tec or Armadillo plate)
5	Aliquotted AMPure XP beads in Agilent deep well plate from page 40 (180 μ L of beads/well)
6	Eppendorf twin.tec or Armadillo plate containing DNA library pools from the 06b Aliquot_Water protocol
8	Empty tip box
9	70% ethanol reservoir from step 30

Run VWorks protocol 06c PoolingConcentration_XT_HS2_ILM

- 32 On the SureSelect setup form, under Select protocol to execute, select the 06c PoolingConcentration_XT_HS2_ILM protocol.
- **33** Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.
- 34 Select the number of columns of samples to be processed.

35 Click Display Initial Bravo Deck Setup.

🥑 Display Initial Bravo Deck Setup

36 Verify that the Bravo deck has been set up as displayed on the right side of the form.

37 Upload the .csv file created in step 12 through step 14.

a Click the "..." button below Select Aliquot Input File to open a directory browser window.

b Browse to the location where you saved the .csv file. Select the file and click **Open**.

The directory browser window closes, returning you to the SureSelect setup form. The selected file location is listed in the field below **Select Aliquot Input File**.

38 Verify that the **Current Tip State** indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See **page 24** for more information on using this segment of the form during the run.

39 When verification is complete, click Run Selected Protocol.

The **06c PoolingConcentration_XT_HS2_ILM** protocol takes approximately 40 minutes. An operator must be present during the run to transfer the water reservoir to the Bravo deck, when directed by the VWorks prompt shown below.

Replace reservoir
Remove the Ethanol Reservoir from Position 9.
Place the Water reservoir at Position 9.
When finished, click Continue below.
User data entry:
Pause and Diagnose Continue

When complete, the purified, pooled DNA samples are in the Eppendorf twin.tec or Armadillo plate located on Bravo deck position 3.

Step 2. Hybridize the gDNA library or library pool and probe

This step uses automation protocol 07 Hyb_XT_HS2_ILM.

In this step, the NGS Bravo completes the liquid handling steps to set up the hybridization reactions. Afterward, you transfer the sample plate to a thermal cycler, held at 65°C, to allow hybridization of the DNA samples to the probe.

This step uses the components listed in **Table 51**. Thaw each component under the conditions indicated in the table. Vortex each reagent to mix, then spin tubes briefly to collect the liquid.

Kit Component	Storage Location	Thawing Conditions	Where Used
SureSelect XT HS2 Blocker Mix (blue cap)	SureSelect XT HS2 Target Enrichment Kit ILM Hyb Module, Box 2 (Post PCR), –20°C	Thaw on ice	page 95
SureSelect RNase Block (purple cap)	SureSelect XT HS2 Target Enrichment Kit ILM Hyb Module, Box 2 (Post PCR), −20°C	Thaw on ice	page 96
SureSelect Fast Hybridization Buffer (bottle)	SureSelect XT HS2 Target Enrichment Kit ILM Hyb Module, Box 2 (Post PCR), –20°C		page 96
Probe	-80°C	Thaw on ice	page 96

Table 51 Reagents for Hybridization

Pre-program the thermal cycler

- 1 Pre-program a thermal cycler (with the heated lid ON) with the appropriate program for the Probe.
 - For the SureSelect XT HS Human All Exon V8 Probes and SureSelect XT HS PreCap Human All Exon V8 Probes including V8, V8+UTR, and V8+NCV use the program in **Table 52**.
 - For all other probes, use the program in **Table 53**.
- 2 Start the program, then immediately pause the program, allowing the heated lid to reach temperature while you set up the reactions.

It is critical to pre-program the thermal cycler before starting the automation protocol for hybridization, in order to maintain the required sample and reagent temperatures during the workflow.

Table 52	Hybridization program for SureSelect XT HS and PreCap XT HS Human All Exon V8
	Probes [*]

Segment	Purpose	Number of Cycles	Temperature	Time
1	Denaturation	1	95°C	5 minutes
2	Blocking	1	65°C	10 minutes
3	Hold for NGS Bravo steps †	1	65°C	Hold
4	Hybridization	60	65°C	1 minute
			37°C	3 seconds
5	Hybridization	1	65°C	60 minutes
6	Hold until start of Capture [‡]	1	65°C [†]	Hold

* When setting up the thermal cycler program, use a reaction volume setting of 35 μL (final volume of hybridization reactions during cycling in Segment 4).

+ Samples are transferred to the NGS Bravo during this Hold step when prompted by the VWorks software.

[‡] Samples are held at 65°C until they are processed in the Capture & Wash automation protocol that begins on **page 103**.

Table 53	Hybridization progra	m for all other probes [*]

Segment	Purpose	Number of Cycles	Temperature	Time
1	Denaturation	1	95°C	5 minutes
2	Blocking	1	65°C	10 minutes
3	Hold for NGS Bravo steps [†]	1	65°C	Hold
4	Hybridization	60	65°C [‡] 	1 minute 3 seconds
5	Hold until start of Capture**	1	65°C [†]	Hold

* When setting up the thermal cycler program, use a reaction volume setting of 35 μL (final volume of hybridization reactions during cycling in Segment 4).

+ Samples are transferred to the NGS Bravo during this Hold step when prompted by the VWorks software.

‡ Hybridization at 65°C is optimal for probes designed for the SureSelect XT HS2/XT HS/XT Low Input platforms. Reducing the hybridization temperature (Segments 4 and 5) may improve performance for probes designed for the SureSelect XT platform, including SureSelect XT Human All Exon V6 (62.5°C), SureSelect XT Clinical Research Exome V2 (62.5°C) and custom probes originally designed for use with SureSelect XT system (60°C-65°C).

** Samples are held at 65°C until they are processed in the Capture & Wash automation protocol that begins on **page 103**.

CAUTION

The lid of the thermal cycler is hot and can cause burns. Use caution when working near the lid.

NOTE

The Hybridization reaction may be run overnight with the following protocol modification.

• In the final segment of the thermal cycler program (**Table 52** or **Table 53**), replace the 65°C Hold step with a 21°C Hold step.

The hybridized samples may be held at 21°C for up to 16 hours.

Prepare the NGS Bravo for protocol 07 Hyb_XT_HS2_ILM

- **3** Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- **4** Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- 5 Pre-set the temperature of Bravo deck positions 4 and 6 to 23°C using the Inheco Multi TEC control touchscreen, as described in Setting the Temperature of Bravo Deck Heat Blocks. Bravo deck position 4 corresponds to CPAC 2, position 1 on the Multi TEC control touchscreen. Bravo deck position 6 corresponds to CPAC 2, position 2 on the Multi TEC control touchscreen.
- 6 Place a red PCR plate insert at Bravo deck position 4.

Prepare the Block master mix

7 Prepare the appropriate volume of Block master mix, on ice, as indicated in **Table 54**. Mix by vortexing at medium speed for 15–20 seconds. Keep on ice.

Table 54 lists the required reagent volumes for 1 to 12 columns of samples. Make sure to use the volumes appropriate for your run.

Reagent	Volume for 1	Dor 1 Based on Number of Columns of Samples (1 to 12 Co								12 Colun	olumns)			
	Library	1	2	3	4	5	6	7	8	9	10	11	12	
Nuclease-free water	2.5 µL	31.9	53.1	74.4	95.6	116.9	138.1	161.1	184.2	207.2	230.2	253.2	276.3	
SureSelect XT HS2 Blocker Mix (blue cap)	5.0 µL	63.8	106.3	148.8	191.3	233.8	276.3	322.3	368.3	414.4	460.4	506.5	552.5	
Total Volume	7.5 µL	95.7	159.4	223.2	286.9	350.7	414.4	483.4	552.5	621.6	690.6	759.7	828.8	

Table 54 Preparation of Block master mix

Prepare one or more Probe Hybridization master mixes

- 8 Prepare the appropriate volume of Probe Hybridization master mix for each of the Probes that will be used for hybridization as indicated in **Table 55** to **Table 58**. Mix by vortexing at medium speed for 15–20 seconds, then spin down briefly. Keep the Probe Hybridization master mix(es) on ice.
- NOTE

Each row of the prepped gDNA sample plate may be hybridized to a different Probe. However, Probes of different sizes require different post-capture amplification cycles. Plan experiments such that similar-sized Probes are hybridized on the same plate.

For runs that use a single Probe for all rows of the plate, prepare the master mix as described in Step a (**Table 55** or **Table 56**) on **page 96**.

For runs that use different Probes for individual rows, prepare each master mix as described in Step b (**Table 57** or **Table 58**) on **page 97**.

a For runs that use a single Probe for all rows, prepare a master mix as described in **Table 55** or **Table 56**, according to the probe design size.

Table 55 Preparation of Probe Hybridization master mix for Probes <3 Mb, 8 rows of wells

Reagent	Volume for 1 Library	Target size <3.0 Mb Volume (μL) Based on Number of Columns of Samples (1 to 12 Columns)											
		1	2	3	4	5	6	7	8	9	10	11	12
Nuclease-free water	7.0 µL	89.3	148.8	208.3	267.8	327.3	401.6	471.0	540.5	609.9	679.3	748.7	818.1
RNase Block (purple cap)	0.5 µL	6.4	10.6	14.9	19.1	23.4	28.7	33.6	38.6	43.6	48.5	53.5	58.4
SureSelect Fast Hybridization Buffer	6.0 µL	76.5	127.5	178.5	229.5	280.5	344.3	403.8	463.3	522.8	582.3	641.8	701.3
Probe (with design <3.0 Mb)	2.0 µL	25.5	42.5	59.5	76.5	93.5	114.8	134.6	154.4	174.3	194.1	213.9	233.8
Total Volume	15.5 µL	197.7	329.4	461.2	592.9	724.7	889.4	1043.0	1196.8	1350.6	1504.2	1657.9	1811.6

Table 56 Preparation of Probe Hybridization master mix for Probes ≥3 Mb, 8 rows of wells

Reagent	Volume for 1 Library	_	Target size ≥3.0 Mb Volume (μL) Based on Number of Columns of Samples (1 to 12 Columns)												
		1	2	3	4	5	6	7	8	9	10	11	12		
Nuclease-free water	4.0 µL	51.0	85.0	119.0	153.0	187.0	229.5	269.2	308.8	348.5	388.2	427.8	467.5		
RNase Block (purple cap)	0.5 µL	6.4	10.6	14.9	19.1	23.4	28.7	33.6	38.6	43.6	48.5	53.5	58.4		
SureSelect Fast Hybridization Buffer	6 µL	76.5	127.5	178.5	229.5	280.5	344.3	403.8	463.3	522.8	582.3	641.8	701.3		
Probe (with design ≥3.0 Mb)	5.0 µL	63.8	106.3	148.8	191.3	233.8	286.9	336.5	386.0	435.6	485.2	534.8	584.4		
Total Volume	15.5 µL	197.7	329.4	461.2	592.9	724.7	889.4	1043.1	1196.7	1350.5	1504.2	1657.9	1811.6		

b For runs that use different Probes in individual rows, prepare a master mix for each Probe as listed in Table 57 or Table 58, according to the probe design size. The volumes listed in Table 57 and Table 58 are for a single row of sample wells. If a given Probe will be hybridized in multiple rows, multiply each of the values below by the number of rows assigned to that Probe.

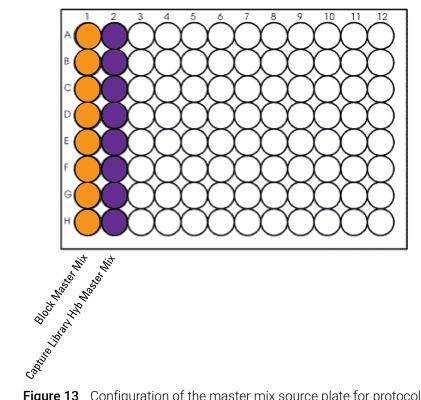
Table 57	Preparation of	f Probe Hybridization	master mix for Probes	< 3 Mb, single row of wells

Reagent	Volume for 1 Library		Target size <3.0 Mb Volume (μL) Based on Number of Columns of Samples (1 to 12 Columns)											
		1	2	3	4	5	6	7	8	9	10	11	12	
Nuclease-free water	7	10.5	17.5	24.5	31.5	38.5	49.0	57.2	65.3	73.5	81.7	89.8	98.0	
RNase Block (purple cap)	0.5	0.8	1.3	1.8	2.3	2.8	3.5	4.1	4.7	5.3	5.8	6.4	7.0	
SureSelect Fast Hybridization Buffer	6.0	9.0	15.0	21.0	27.0	33.0	42.0	49.0	56.0	63.0	70.0	77.0	84.0	
Probe (with design <3 Mb)	2.0	3.0	5.0	7.0	9.0	11.0	14.0	16.3	18.7	21.0	23.3	25.7	28.0	
Total Volume	15.5	23.3	38.8	54.3	69.8	85.3	108.5	126.6	144.7	162.8	180.8	198.9	217.0	

Table 58 Preparation of Probe Hybridization master mix for Probes ≥3 Mb, single row of wells

Reagent	Volume for 1 Library		Target size ≥3.0 Mb Volume (μL) Based on Number of Columns of Samples (1 to 12 Columns)											
		1	2	3	4	5	6	7	8	9	10	11	12	
Nuclease-free water	4.0	6.0	10.0	14.0	18.0	22.0	28.0	32.7	37.3	42.0	46.7	51.3	56.0	
RNase Block (purple cap)	0.5	0.8	1.3	1.8	2.3	2.8	3.5	4.1	4.7	5.3	5.8	6.4	7.0	
SureSelect Fast Hybridization Buffer	6.0	9.0	15.0	21.0	27.0	33.0	42.0	49.9	56.0	63.0	70.0	77.0	84.0	
Probe (with design ≥3 Mb)	5.0	7.5	12.5	17.5	22.5	27.5	35.0	40.8	46.7	52.5	58.3	64.2	70.0	
Total Volume	15.5	23.3	38.8	54.3	69.8	85.3	108.5	126.6	144.7	162.8	180.8	198.9	217.0	

Prepare the master mix source plate


9 Prepare the hybridization master mix source plate at room temperature, containing the master mixes prepared in step 7 and step 8. Add the volumes indicated in Table 59 of each master mix to each well of the indicated column of the plate. When using multiple Probes in a run, add the Probe Hybridization master mix for each probe to the appropriate row(s) of the processing plate. The final configuration of the master mix source plate is shown in Figure 13.

Use either an **Eppendorf twin.tec** plate or an **Armadillo** plate as the master mix source plate, as indicated in the Processing Plate setting on the form.

Table 59 Preparation of the master mix source plate for 07 Hyb_XT_HS2_ILM protocol

Master Mix Solution	Position on Source	Volume (µL) of Master Mix added per Well of Processing Source Plate Based on Number of Columns in the Run (1 to 12 Columns)											
	Plate	1	2	3	4	5	6	7	8	9	10	11	12
Block master mix	Column 1 (A1-H1)	11.0	19.0	27.0	34.9	42.9	50.9	59.5	68.1	76.8	85.4	94.0	102.7
Probe Hybridization master mix	Column 2 (A2-H2)	23.3	38.8	54.3	69.8	85.3	108.5	126.6	144.7	162.8	180.8	198.9	217.0*

* Wells containing 217.0 μL are nearly full. Pipette carefully to avoid introducing bubbles to the bottom of the wells. Handle the plate with care to avoid spillage. Do not centrifuge.

- **Figure 13** Configuration of the master mix source plate for protocol **07 Hyb_XT_HS2_ILM**. Column 2 can contain different Probe Hybridization master mixes in each row.
- **10** Proceed immediately to loading the Bravo deck, keeping the master mix plate at room temperature only briefly during the loading process.

Load the Bravo deck

11 Load the Bravo deck according to Table 60.

Table 60 Initial Bravo deck configuration for Hyb_XT_HS2_ILM protocol

Location	Content
2	New tip box
4	Empty PCR plate seated in red insert (PCR plate type must be specified on setup form under step 2)
5	Empty processing plate (Eppendorf twin.tec or Armadillo plate)
6	Master Mix source plate (unsealed)
8	Empty tip box
9	Prepared library aliquots or library pools in Eppendorf twin.tec or Armadillo plate (unsealed)

Run VWorks protocol Hyb_XT_HS2_ILM

- 12 On the SureSelect setup form, under **Select protocol to execute**, select the 07 Hyb_XT_HS2_ILM protocol.
- **13** Under **Select labware for thermal cycling**, select the specific type of PCR plate used at position 4 of the Bravo deck.
- 14 Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.
- 15 Select the number of columns of samples to be processed.
- 16 Click Display Initial Bravo Deck Setup.

🧭 Display Initial Bravo Deck Setup

- 17 Verify that the Bravo deck has been set up as displayed on the right side of the form.
- 18 Verify that the Current Tip State indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See page 24 for more information on using this segment of the form during the run.
- 19 When verification is complete, click Run Selected Protocol.

The NGS Bravo combines the prepped gDNA in the wells of the sample plate with the aliquotted SureSelect Block master mix. When this process is complete, you will be prompted to transfer the plate to the thermal cycler for sample denaturation and blocking prior to hybridization.

20 When prompted by VWorks as shown below, remove the PCR plate from position 4 of the Bravo deck, leaving the red insert in place. After removing the sample plate, click **Continue**.

Remove plate from Position 4
Remove hybridization plate from insert at Position 4. Seal the plate, place in thermal cycler and begin hybridization program.
Leave the RED Insert on the deck at Position 4.
User data entry:
Pause and Diagnose Continue

- **21** Seal the sample plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.
- 22 Transfer the sealed plate to a thermal cycler. Initiate the pre-programmed thermal cycler program (Table 52 on page 94 or Table 53 on page 94).

While the sample plate incubates on the thermal cycler, the NGS Bravo aliquots the Probe Hybridization master mix to the Eppendorf twin.tec or Armadillo plate.

CAUTION

You must complete **step 23** to **step 27** quickly, and immediately after being prompted by the VWorks software. It is important that sample temperature remains approximately 65°C during transfers between the NGS Bravo and thermal cycler.

23 When the NGS Bravo has finished aliquoting the Probe Hybridization master mix, you will be prompted by VWorks as shown below. When the thermal cycler reaches the 65°C hold step, click Continue. Leave the sample plate in the thermal cycler until you are notified to move it.

Wait for plate in thermal cycler
When thermal cycler has reached hold step at 65°C, dick Continue.
Leave DNA plate in thermal cycler until you are prompted to transfer the plate.
User data entry:
Pause and Diagnose Continue

24 When prompted by VWorks as shown below, quickly remove the sample plate from the thermal cycler, unseal the plate carefully to avoid splashing, and transfer the plate to position 4 of the Bravo deck, seated in the red insert. Click **Continue**.

Place DNA plate on Bravo Pos. 4
Complete the following steps as quickly as possible: Retrieve DNA plate from thermal cycler,
and place on RED Insert at Bravo Position 4 and unseal.
Click Continue to resume protocol.
"Use Caution: Position 4 will be not.
User data entry:
Pause and Diagnose Continue

Bravo deck position 4 will be hot.

Use caution when handling components that contact heated deck positions.

The NGS Bravo transfers the Probe Hybridization master mix to the wells of the PCR plate that contain the mixture of prepped gDNA samples and blocking agents.

25 When prompted by VWorks as shown below, quickly remove the PCR sample plate from Bravo deck position 4, leaving the red insert in place.

Remove Plate from 4
Quickly remove plate from position 4, seal and place in thermal cycler. Click Continue after plate is in thermal cycler for protocol to finish.
User data entry: Description Pause and Diagnose

26 Seal the sample plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.

27 Quickly transfer the plate back to the thermal cycler, held at 65°C. On the thermal cycler, initiate the hybridization segment of the pre-programmed thermal cycler program (segment 4 from Table 52 on page 94 or Table 53 on page 94). During this step, the prepared DNA samples or DNA sample pools are hybridized to the Probe.

CAUTION

The thermal cycler is held at 65°C using a heated lid at 105°C. The lid of the thermal cycler is hot and can cause burns. Use caution when working near the lid.

28 After initiating hybridization on the thermal cycler, click **Continue** on the VWorks screen.

29 If you are using the pre-capture pooling workflow, when the Hybridization protocol is complete, remove the Eppendorf twin.tec or Armadillo plate containing the remainder of the prepared library pools. This plate is located at position 9 of the Bravo deck. Seal the plate and store it at -20°C in the event that the samples require further processing.

Retain the Eppendorf twin.tec or Armadillo source plate containing the Block master mix and Probe Hybridization master mix located at position 6 of the Bravo deck for later use in the **10 Post-CapPCR_XT_HS2_ILM** protocol.

Step 3. Capture the hybridized DNA

This step uses automation protocol 08 SSELCapture_XT_HS2_ILM.

In this step, the NGS Bravo automates capture of the gDNA-probe hybrids using streptavidincoated magnetic beads.

If performing same-day hybridization and capture, setup tasks for the Capture protocol (**step 1**, below, through **step 18** on **page 105**) should be completed during the thermal cycler incubation for hybridization (approximately 1.5 to 2.5-hour duration) started on **page 102**. If performing next-day capture after an overnight hold at 21°C, begin these tasks on day 2.

This step uses the components listed in Table 61.

Table 61 Reagents for Capture

Kit Component	Storage Location	Where Used
SureSelect Binding Buffer	SureSelect Target Enrichment Kit, ILM Hyb Module, Box 1 (Post PCR), RT	page 104
SureSelect Wash Buffer 1	SureSelect Target Enrichment Kit, ILM Hyb Module, Box 1 (Post PCR), RT	page 104
SureSelect Wash Buffer 2	SureSelect Target Enrichment Kit, ILM Hyb Module, Box 1 (Post PCR), RT	page 104
Dynabeads MyOne Streptavidin T1	Follow storage recommendations provided by supplier (see Table 1 on page 11)	page 104

Prepare the NGS Bravo for protocol 08 SSELCapture_XT_HS2_ILM

- 1 Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- 2 Place a red PCR plate insert at Bravo deck position 4.
- **3** Place the silver Deep Well plate insert on position 6 of the Bravo deck. This insert is required to facilitate heat transfer to the Deep Well source plate wells. When loading a source plate on the silver insert, make sure the plate is seated properly to ensure proper heat transfer.

Prepare the Dynabeads streptavidin beads source plate

- **4** Vigorously resuspend the Dynabeads MyOne Streptavidin T1 magnetic beads on a vortex mixer. The beads settle during storage.
- 5 Wash the magnetic beads.
 - **a** In a conical vial, combine the components listed in **Table 62**. The volumes below include the required overage.

Table 62 lists the required reagent volumes for 1 to 12 columns of samples. Make sure to use the volumes appropriate for your run.

Table 62 Magnetic bead washing mixture

Reagent	Volume for 1 Library	Volume (μL) Based on Number of Columns of Samples (1 to 12 Columns)											
		1	2	3	4	5	6	7	8	9	10	11	12
Dynabeads MyOne Streptavidin T1 bead suspension	50 µL	425	825	1225	1650	2050	2500	2900	3350	3750	4200	4600	5000
SureSelect Binding Buffer	200 µL	1700	3300	4900	6600	8200	10000	11600	13400	15000	16800	18400	20000
Total Volume	250 µL	2125	4125	6125	8250	10260	12500	14500	16750	18750	21000	23000	25000

- **b** Mix the beads on a vortex mixer for 5 seconds.
- c Put the vial into a magnetic separator device.
- **d** Remove and discard the supernatant.
- e Repeat step a through step d for a total of 3 washes. (Retain the beads after each wash and combine with a fresh aliquot of the indicated volume of SureSelect Binding Buffer.)
- 6 Resuspend the beads in SureSelect Binding buffer, according to Table 63 below.

Table 63 Resuspension volumes for washed bead suspension

Reagent	Volume for 1	Volume (µL) Based on Number of Columns of Samples (1 to 12 Columns)											
	Library	1	2	3	4	5	6	7	8	9	10	11	12
SureSelect Binding Buffer	200 µL	1700	3300	4900	6600	8200	10000	11600	13400	15000	16800	18400	20000

- 7 Prepare an Agilent Deep Well source plate for the washed streptavidin bead suspension. For each well to be processed, add 200 μ L of the homogeneous bead suspension to the Agilent Deep Well plate.
- 8 Place the streptavidin bead source plate at position 5 of the Bravo deck.

Prepare wash buffer source plates

- **9** Prepare a processing source plate (Eppendorf twin.tec or Armadillo plate) labeled Wash #1. For each well to be processed, add 150 μL of SureSelect Wash Buffer 1.
- **10** Prepare an Agilent Deep Well source plate labeled *Wash #2*. For each well to be processed, add 1150 µL of SureSelect Wash Buffer 2.

Load the NGS Bravo

11 Load the Bravo deck according to Table 64 (position 5 should already be loaded).

Table 64 Initial Bravo deck configuration for 08 SSELCapture_XT_HS2_ILM protocol

Location	Content					
1	Empty waste plate (Agilent 2 mL square well)					
2	New tip box					
3	Wash #1 source plate (Eppendorf twin.tec or Armadillo plate) from step 9					
4	Empty red insert					
5	Dynabeads streptavidin bead Deep Well source plate					
6	Wash #2 source plate (Agilent Deep Well plate) from step 10 seated on silver Deep Well insert					
8	Empty tip box					

Set up VWorks protocol 08 SSELCapture_XT_HS2_ILM

- 12 On the SureSelect setup form, under Select protocol to execute, select the 08 SSELCapture_XT_HS2_ILM protocol.
- **13** Under **Select labware for thermal cycling**, select the specific type of PCR plate used for hybridization. This plate will be transferred from the thermal cycler to Bravo deck position 4 when prompted by VWorks.
- 14 Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.
- 15 Select the number of columns of samples to be processed.
- 16 Click Display Initial Bravo Deck Setup.

🧭 Display Initial Bravo Deck Setup

17 Verify that the Bravo deck has been set up as displayed on the right side of the form.

18 Verify that the Current Tip State indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See page 24 for more information on using this segment of the form during the run.

Run VWorks protocol 08 SSELCapture_XT_HS2_ILM

Start the **08** SSELCapture_XT_HS2_ILM protocol upon completion of the hybridization incubation. The hybridization incubation is complete when the thermal cycler program reaches the 65°C Hold step. The 65°C Hold step is segment 6 if using **Table 52** on page 94, and it is segment 5 if using **Table 53** on page 94.

After verifying that the hybridization step is complete and that all NGS Bravo setup steps for capture are complete, click **Run Selected Protocol**. Leave the hybridization plate in the thermal cycler until you are prompted to transfer the plate to the NGS Bravo.

The total duration of the **08 SSELCapture_XT_HS2_ILM** protocol is approximately 35 minutes. An operator must be present to transfer the hybridization plate from the thermal cycler when prompted by VWorks as shown in **step 19** below (<5 minutes after starting the protocol).

- **CAUTION** It is important to complete **step 19** quickly and carefully. Unseal the plate without tilting or jerking the plate to avoid sample splashing. Make sure that the NGS Bravo is completely prepared, with all components in place, before you transfer the sample plate to the Bravo deck.
 - **19** When prompted by VWorks as shown below, quickly remove the PCR plate, containing the hybridization reactions held at 65°C, from the thermal cycler. Unseal the plate carefully to avoid splashing, and quickly transfer the plate to position 4 of the Bravo deck, seated in the red insert. Click **Continue** to resume the protocol.

Add Hyb Plate
Complete the following steps as quickly as possible: Retrieve Hybridization plate from thermocycler, and place on RED INSERT at Bravo Position 4 and unseal. Click Continue to resume protocol.
User data entry: User data entry:

20 When the capture incubation period is complete you will be prompted by VWorks as shown below. Keep the hybrid-capture bead suspension plate at position 5 and proceed immediately to automation protocol **09 SSELWash_XT_HS2_ILM**.

Proceed to Cleanup			
The captured DNA/RNA hybrids are ready at Position 5. Proceed immediately to 09 SSELWash_XT_HS2_ILM_v.A1.0.2.pro.			
User data entry:			
Pause and Diagnose Continue			

Step 4. Wash the captured DNA

This step uses automation protocol 09 SSELWash_XT_HS2_ILM.

In this step, the NGS Bravo automates washing of the captured DNA-RNA hybrids.

Prepare the NGS Bravo and reagents for protocol 09 SSELWash_XT_HS2_ILM

- 1 Keep the following contents from the previous automation protocol in their current positions on the Bravo deck.
 - Position 3: Wash Buffer 1 source plate
 - Position 4: Red PCR plate insert (empty)
 - Position 5: Hybrid-capture bead suspension plate
 - Position 6: Wash Buffer 2 source plate

Clear the remaining Bravo deck positions of all plates and tip boxes.

2 Pre-set the temperature of Bravo deck positions 4 and 6 as indicated in **Table 65**. See **Setting the Temperature of Bravo Deck Heat Blocks** for more information on how to do this step.

Table 65 Bravo Deck Temperature Presets for protocol 09 SSELWash_XT_HS2_ILM

Bravo Deck Position	Temperature Preset	Preset Method
4	80°C	Inheco Multi TEC control touchscreen (CPAC 2-1)
6	85°C	Inheco Multi TEC control touchscreen (CPAC 2-2)

3 Prepare an Agilent shallow well reservoir containing 30 mL of nuclease-free water.

Make sure that the water in the reservoir does not contain bubbles. If bubbles are present, dislodge them with a clean pipette tip.

At the end of the automation protocol, you may retain the Agilent shallow well reservoir for use in the **10 Post-CapPCR_XT_HS2_ILM** protocol if you are running that protocol today.

Load the NGS Bravo

4 Load the Bravo deck according to Table 66 (positions 3, 4, 5, and 6 should already be loaded).

Table 66 Initial Bravo deck configuration for 09 SSELWash_XT_HS2_ILM

Location	Content
1	Empty waste plate (Agilent 2 mL square well)
2	New tip box
3	Wash #1 source plate (Eppendorf twin.tec or Armadillo plate)
4	Empty red insert
5	DNA-RNA hybrids captured on streptavidin beads in Agilent Deep Well plate
6	Wash #2 source plate (Agilent Deep Well plate) seated on silver Deep Well insert
8	Empty tip box
9	Nuclease-free water reservoir from step 3

Run VWorks protocol 09 SSELWash_XT_HS2_ILM

- 5 On the SureSelect setup form, under **Select protocol to execute**, select the **09 SSELWash_XT_HS2_ILM** protocol.
- 6 Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.
- 7 Select the number of columns of samples to be processed.
- 8 Click Display Initial Bravo Deck Setup.

🧭 Display Initial Bravo Deck Setup

- 9 Verify that the Bravo deck has been set up as displayed on the right side of the form.
- 10 Verify that the **Current Tip State** indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See **page 22** for more information on using this segment of the form during the run.
- 11 When setup and verification is complete, click Run Selected Protocol.

Running the **09 SSELWash_XT_HS2_ILM** protocol takes approximately 90 minutes. An operator must be present during the run to complete tip box replacement as directed by VWorks prompts. Once complete, you will be prompted as shown below.

12 When the wash protocol is complete, the captured, bead-bound DNA samples are located in the processing plate at position 5 of the Bravo deck, and you will be prompted by VWorks as shown below. Click **Continue** on the VWorks screen to finish the protocol.

Proceed to Amplification	n
The captured DNA/RNA at Position 5 in an Eppen plate. Proceed immediate CapPCR_XT_HS2_ILM_v	dorf (or Armadillo) ely to 10 Post-
User data entry:	
Pause and Diagnose	<u>C</u> ontinue

Proceed immediately to the 10 Post-CapPCR_XT_HS2_ILM protocol, starting on page 112.

ΝΟΤΕ

Captured DNA is retained on the streptavidin beads during the post-capture amplification step.

Post-Capture Sample Processing for Multiplexed Sequencing

Step 1. Amplify the captured libraries 112
Step 2. Purify the amplified indexed libraries using AMPure XP beads 117
Step 3. Assess sequencing library DNA quantity and quality 119
Option 1: Analysis using the Agilent 4200 TapeStation and High Sensitivity D1000
ScreenTape 119
Option 2: Analysis using an equivalent platform (non-automated) 124
Step 4. Pool samples for multiplexed sequencing (optional) 125
Step 5. Prepare sequencing run and analyze the data 131
Sequence analysis resources 135

This chapter describes the steps to amplify, purify, and assess quality and quantity of the captured libraries. Sample pooling instructions for the post-capture pooling workflow are provided to prepare the indexed, molecular barcoded samples for multiplexed sequencing.

Step 1. Amplify the captured libraries

This step uses automation protocol 10 Post-CapPCR_XT_HS2_ILM.

In this step, the NGS Bravo completes the liquid handling steps for PCR-amplification of the SureSelect-enriched DNA samples. After the PCR plate is prepared by the NGS Bravo, you transfer the plate to a thermal cycler for amplification.

The design size of your Probe determines the amplification cycle number. Plan your experiments for amplification of samples prepared using probes of similar design sizes on the same plate. See **Table 69** on page 113 for cycle number recommendations.

This step uses the components listed in **Table 67**. Before you begin, thaw the reagents listed below and keep on ice. Before use, mix each component as directed.

Table 67 Reagents for post-capture PCR amplification

Component	Storage Location	Mixing Method	Where Used
Herculase II Fusion DNA Polymerase (red cap)	SureSelect XT HS2 Target Enrichment Kit, ILM Hyb Module Box 2 (Post PCR), −20°C	Pipette up and down 15–20 times	page 113
5× Herculase II Reaction Buffer with dNTPs (clear cap)	SureSelect XT HS2 Target Enrichment Kit, ILM Hyb Module Box 2 (Post PCR), −20°C	Vortexing	page 113
SureSelect Post-Capture Primer Mix (clear cap)	SureSelect XT HS2 Target Enrichment Kit, ILM Hyb Module Box 2 (Post PCR), −20°C	Vortexing	page 113

CAUTION

To avoid cross-contaminating libraries, set up PCR master mixes in a dedicated clean area or PCR hood with UV sterilization and positive air flow.

Prepare the NGS Bravo and reagents for protocol 10 Post-CapPCR_XT_HS2_ILM

- 1 Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- 2 Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- **3** Prepare an Agilent shallow well reservoir containing 30 mL of nuclease-free water. Use the same Agilent shallow well reservoir that was used in the **09 SSELWash_XT_HS2** protocol.

Make sure that the water in the reservoir does not contain bubbles. If bubbles are present, dislodge them with a clean pipette tip.

4 Pre-set the temperature of Bravo deck position 6 to 4°C using the Inheco Multi TEC control touchscreen, as described in Setting the Temperature of Bravo Deck Heat Blocks. Bravo deck position 6 corresponds to CPAC 2, position 2 on the Multi TEC control touchscreen.

Pre-program the thermal cycler

5 Pre-program a thermal cycler (with the heated lid ON) with the program in **Table 68**. Start the program, then immediately pause the program, allowing the heated lid to reach temperature while you set up the reactions.

Segment	Number of Cycles	Temperature	Time
1	1	98°C	2 minutes
2	10 to 16	98°C	30 seconds
	See Table 69 for recommendations based on probe design size	60°C	30 seconds
		72°C	1 minute
3	1	72°C	5 minutes
4	1	4°C	Hold

Table 68 Post-capture PCR Thermal Cycler Program

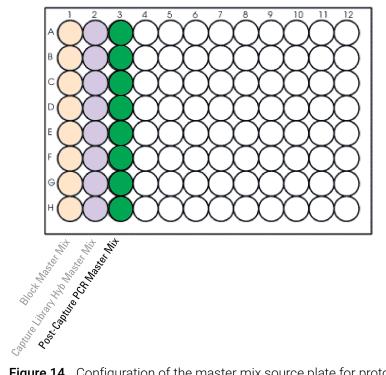
Table 69 Post-capture PCR cycle number recommendations

Probe Size/Description	Cycles
Probes <0.2 Mb	16 cycles
Probes 0.2-3 Mb	12–16 cycles
Probes 3–5 Mb	11–12 cycles
Probes >5 Mb (including Human All Exon Probes)	10–11 cycles

Prepare the post-capture PCR master mix and master mix source plate

6 Prepare the appropriate volume of post-capture PCR Master Mix, according to **Table 70**. Mix well using a vortex mixer and keep on ice.

Table 70 lists the required reagent volumes for 1 to 12 columns of samples. Make sure to use the volumes appropriate for your run.


Table 70 Preparation of Post-Capture PCR master mix

Reagent	Volume for 1			Ва	ised on N	lumber o		me (µL) s of Sam	ples (1 to	o 12 Colur	nns)		
	Library	1	2	3	4	5	6	7	8	9	10	11	12
5× Herculase II Reaction Buffer with dNTPs (clear cap)	10 µL	170	255	340	425	510	595	683.3	772.5	862.5	953.3	1045	1137.5
SureSelect Post-Capture Primer Mix (clear cap)	1 μL	17.0	25.5	34.0	42.5	51.0	59.5	68.3	77.3	86.3	95.3	104.5	113.8
Herculase II Fusion DNA Polymerase (red cap)	1 µL	17.0	25.5	34.0	42.5	51.0	59.5	68.3	77.3	86.3	95.3	104.5	113.8
Total Volume	12.0 µL	204.0	306.0	408.0	510.0	612.0	714.0	819.9	927.1	1035.1	1143.9	1254.0	1365.1

7 Using the same master mix source plate (Eppendorf twin.tec or Armadillo plate) that was used for the **07 Hyb_XT_HS2_ILM** protocol run, prepare the master mix source plate by adding the volume of PCR master mix indicated in **Table 71** to all wells of column 3 of the plate. The final configuration of the sample buffer source plate is shown in **Figure 14**.

Table 71 Preparation of the master mix source plate for 10 Post-CapPCR_XT_HS2_ILM protocol

Master Mix Solution	Position on Source		Volume (µL) of Master Mix added per Well of Selected Processing Source Plate Based on Number of Columns in the Run (1 to 12 Columns)										
	Plate	1	2	3	4	5	6	7	8	9	10	11	12
Post-Capture PCR Master Mix	Column 3 (A3-H3)	23.0	36.0	49.0	62.0	75.0	88.0	101.0	114.0	127.0	140.0	153.0	166.0

- Figure 14 Configuration of the master mix source plate for protocol
 10 Post-CapPCR_XT_HS2_ILM. The master mixes dispensed during previous protocols are shown in light shading.
- 8 Seal the master mix source plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.
- **9** Centrifuge the plate for 30 seconds to drive the well contents off the walls and plate seal and to eliminate any bubbles.

Load the NGS Bravo

10 Load the Bravo deck according to Table 72.

Table 72 Initial Bravo deck configuration for Post-CapPCR_XT_HS2_ILM protocol

Location	Content
1	Nuclease-free water reservoir from step 3
2	New tip box
5	Captured DNA bead suspensions in Eppendorf twin.tec or Armadillo plate (unsealed)
6	Empty PCR plate seated in red insert (PCR plate type must be specified on setup form under step 2)
8	Empty tip box
9	Master mix source plate containing PCR Master Mix in Column 3 (unsealed)

Run VWorks protocol 10 Post-CapPCR_XT_HS2_ILM

- 11 On the SureSelect setup form, under Select protocol to execute, select the 10 Post-CapPCR_XT_HS2_ILM protocol.
- 12 Under Select labware for thermal cycling, select the specific type of PCR plate used at position 6 of the Bravo deck.
- 13 Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.
- 14 Select the number of columns of samples to be processed.
- 15 Click Display Initial Bravo Deck Setup.

🧭 Display Initial Bravo Deck Setup

- 16 Verify that the NGS Bravo has been set up as displayed on the right side of the form.
- 17 Verify that the **Current Tip State** indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See **page 24** for more information on using this segment of the form during the run.
- 18 When verification is complete, click Run Selected Protocol.

Running the **10 Post-CapPCR_XT_HS2_ILM** protocol takes approximately 10 minutes. Once complete, the PCR-ready samples, containing captured DNA and PCR master mix, are located in the PCR plate at position 6 of the Bravo deck.

19 When you see the following prompt, remove the PCR plate from position 6 of the Bravo deck and seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 seconds.

Plate ready to seal	
Seal PCR plate and run protocol.	thermocycler
User data entry:	
Pause and Diagnose	<u>C</u> ontinue

- **20** Place the plate in the thermal cycler. Resume the thermal cycler program in **Table 68** on page 113.
- **21** When the PCR amplification program is complete, spin the plate briefly then keep on ice.

Retain the Eppendorf twin.tec or Armadillo source plate containing the Post-Capture PCR master mix located at position 9 of the Bravo deck for later use in the

12 TS_HighSensitivity_D1000 protocol (see "Option 1: Analysis using the Agilent 4200 TapeStation and High Sensitivity D1000 ScreenTape" on page 119).

Step 2. Purify the amplified indexed libraries using AMPure XP beads

This step uses automation protocol 11 Cleanup_Post-CapPCR_XT_HS2_ILM.

In this step, the NGS Bravo transfers AMPure XP beads to the indexed DNA sample plate and then collects and washes the bead-bound DNA.

This step uses the aliquoted plate of AMPure XP beads that was prepared on page 42.

Prepare the NGS Bravo and reagents for protocol 11 Cleanup_Post-CapPCR_XT_HS2_ILM

- 1 Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- 2 Pre-set the temperature of Bravo deck positions 4 and 6 as indicated in **Table 73**. See **Setting the Temperature of Bravo Deck Heat Blocks** for more information on how to do this step.

Table 73 Deck Temperature Presets for protocol 11 Cleanup_Post-CapPCR_XT_HS2_ILM

Bravo Deck Position	Temperature Preset	Preset Method
4	45°C	Inheco Multi TEC control touchscreen (CPAC 2-1)
6	4°C	Inheco Multi TEC control touchscreen (CPAC 2-2)

3 Prepare an Agilent shallow well reservoir containing 30 mL of nuclease-free water. If available, use the same Agilent shallow well reservoir that was used in the 10 Post-CapPCR_XT_HS2_ILM protocol.

Make sure that the water in the reservoir does not contain bubbles. If bubbles are present, dislodge them with a clean pipette tip.

4 Prepare an Agilent deep well reservoir containing 50 mL of freshly-prepared 70% ethanol.

Load the NGS Bravo

5 Load the Bravo deck according to Table 74.

Table 74 Initial Bravo deck configuration for 11 Cleanup_Post-CapPCR_XT_HS2_ILM protocol

Location	Content
1	Empty waste plate (Agilent 2 mL square well)
2	New tip box
3	Empty processing plate (Eppendorf twin.tec or Armadillo plate)
5	Aliquotted AMPure XP beads in Agilent Deep Well plate from page 42 (50 μL of beads/well)
6	Amplified DNA libraries or library pools in unsealed PCR plate seated in red insert (PCR plate type must be specified on setup form under step 2)

Table 74 Initial Bravo deck configuration for 11 Cleanup_Post-CapPCR_XT_HS2_ILM protocol

Location	Content
8	Empty tip box
9	70% ethanol reservoir from step 4

Run VWorks protocol 11 Cleanup_Post-CapPCR_XT_HS2_ILM

- 6 On the SureSelect setup form, under **Select protocol to execute**, select the **11 Cleanup_Post-CapPCR_XT_HS2_ILM** protocol.
- 7 Under **Select labware for thermal cycling**, select the specific type of PCR plate containing the amplified libraries at position 6.
- 8 Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.
- 9 Select the number of columns of samples to be processed.
- 10 Click Display Initial Bravo Deck Setup.

🥑 Display Initial Bravo Deck Setup

11 Verify that the NGS Bravo has been set up as displayed on the right side of the form.

- 12 Verify that the **Current Tip State** indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See **page 24** for more information on using this segment of the form during the run.
- 13 When verification is complete, click Run Selected Protocol.

The purification protocol takes approximately 40 minutes. An operator must be present during the run to complete tip box replacement and to transfer the water reservoir to the Bravo deck, when directed by the VWorks prompt shown below.

Replace reservoir
Remove the Ethanol Reservoir from Position 9. Place the Water reservoir at Position 9. When finished, click Continue below.
User data entry:
Pause and Diagnose Continue

When complete, the amplified DNA samples are in the processing plate located on Bravo deck position 3.

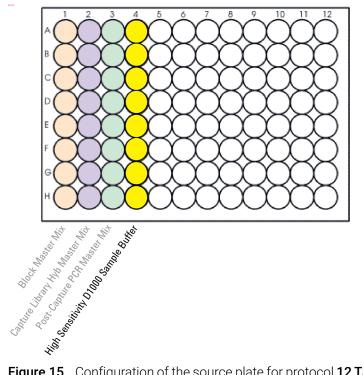
Step 3. Assess sequencing library DNA quantity and quality

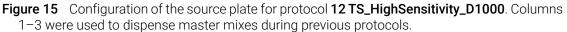
Post-capture library analysis can be done using one of two options.

- Option 1: Prepare the analytical assay plate using automation (protocol TS_HighSensitivity_D1000) and perform analysis on Agilent 4200 TapeStation. See "Option 1: Analysis using the Agilent 4200 TapeStation and High Sensitivity D1000 ScreenTape" on page 119.
- Option 2: Prepare the analytical samples manually and perform analysis on Agilent 2100 Bioanalyzer, Agilent 4200 or 4150 TapeStation or Agilent 5200 Fragment Analyzer. See "Option 2: Analysis using an equivalent platform (non-automated)" on page 124.

Option 1: Analysis using the Agilent 4200 TapeStation and High Sensitivity D1000 ScreenTape

This section describes use of automation protocol **12 TS_HighSensitivity_D1000** to prepare samples for analysis. The automation protocol prepares the assay sample plate by combining 3 μ L of each DNA sample with 3 μ L of High Sensitivity D1000 Sample Buffer. Afterward, you transfer the sample plate to the 4200 TapeStation instrument for analysis. For more information to do this step, see the Agilent High Sensitivity D1000 Assay Quick Guide for 4200 TapeStation System.


Allow the reagents used with either analysis system to equilibrate to room temperature for 30 minutes prior to use.


Prepare the NGS Bravo and Sample Buffer source plate for protocol 12 TS_HighSensitivity_D1000

- 1 Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- 2 Turn off the ThermoCube device (see **page 22**) to restore position 9 of the Bravo deck to room temperature.
- 3 Pre-set the temperature of Bravo deck position 4 to 4°C using the Inheco Multi TEC control touchscreen, as described in Setting the Temperature of Bravo Deck Heat Blocks. Bravo deck position 4 corresponds to CPAC 2, position 1 on the Multi TEC control touchscreen.
- 4 Using the same master mix source plate that was used for the 10 Post-CapPCR_XT_HS2_ILM protocol run, prepare the Sample Buffer source plate at room temperature. Add the volume of High Sensitivity D1000 Sample Buffer indicated in Table 75 to each well of column 4 of the plate. The final configuration of the sample buffer source plate is shown in Figure 15.

Table 75 Preparation of the Sample Buffer Source Plate for 12 TS_HighSensitivity_D1000 protocol

Solution	Position on Source		Volume (µL) of Master Mix added per Well of Selected Processing Source Plate Based on Number of Columns in the Run (1 to 12 Columns)										
Pla	Plate	1	2	3	4	5	6	7	8	9	10	11	12
High Sensitivity D1000 Sample Buffer	Column 4 (A4-H4)	8.0	11.0	14.0	17.0	20	23.0	26.5	30	33.5	37	40.5	44.0

Load the NGS Bravo

5 Load the Bravo deck according to Table 76.

Table 76	Initial Brave	o deck conf	iguration for	TS_HighSensitivity	_D1000 protocol

Location	Content
2	New tip box
4	Amplified post-capture libraries or library pools in Eppendorf twin.tec or Armadillo plate (unsealed)
6	Empty TapeStation analysis plate (Agilent p/n 5042-8502)
8	Empty tip box
9	Master mix source plate (Eppendorf twin.tec or Armadillo plate) containing High Sensitivity D1000 Sample Buffer in Column 4

CAUTION

To prevent damage to the Agilent 4200 TapeStation instrument and the NGS Bravo, use only the specified Agilent plates (Agilent p/n 95042-8502) for automated assay plate preparation.

The Agilent 2200 TapeStation system does not support use of these plates. Do not load sample plates prepared using the automated protocol in the 2200 TapeStation instrument.

Run VWorks protocol 12 TS_HighSensitivity_D1000

- 6 On the SureSelect setup form, under **Select protocol to execute**, select the **12 TS_HighSensitivity_D1000** protocol.
- 7 Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.
- 8 Select the number of columns of samples to be processed.
- 9 Click Display Initial Bravo Deck Setup.

🥑 Display Initial Bravo Deck Setup

10 Verify that the NGS Bravo has been set up as displayed on the right side of the form.

- 11 Verify that the **Current Tip State** indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See **page 24** for more information on using this segment of the form during the run.
- 12 When verification is complete, click Run Selected Protocol.

Running the **12 TS_HighSensitivity_D1000** protocol takes approximately 10 minutes. Once removal of analytical samples is complete, remove the primary DNA library sample plate from position 4, seal the plate, and keep on ice until the samples are pooled for sequencing on **page 125**.

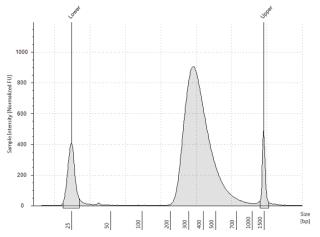
13 When prompted by VWorks as shown below, remove the TapeStation analysis plate containing the analytical samples from position 6 of the Bravo deck, then click **Continue**. Seal the assay plate with a foil seal and vortex the sealed plate as directed in the Agilent High Sensitivity D1000 Assay Quick Guide for 4200 TapeStation System.

Plate ready to seal							
Seal analysis plate and vortex as per TapeStation user guide.							
User data entry:							
Pause and Diagnose	<u>C</u> ontinue						

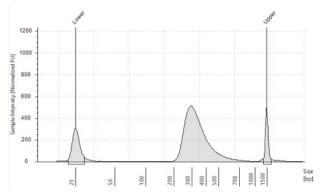
CAUTION

To prevent damage to the Agilent 4200 TapeStation instrument, use only the specified 96-well plate foil seals (Agilent p/n 5067-5154).

For accurate quantitation, make sure that you thoroughly mix the combined DNA and sample buffer on a vortex mixer for 1 minute, then spin briefly to collect the liquid.


Run the High Sensitivity D1000 Assay and analyze the data

- **14** Load the analytical sample plate, the High Sensitivity D1000 ScreenTape, and loading tips into the TapeStation as instructed in the instrument user manual. Start the run.
- 15 Verify that the electropherogram shows the expected DNA fragment size peak position (see Table 77 for guidelines). Sample electropherograms are shown in Figure 16 (library prepared from high-quality DNA), Figure 17 (library prepared from medium-quality FFPE DNA), and Figure 18 (library prepared from low-quality FFPE DNA).


Table 77 Post-capture library qualification guidelines

NGS read length for fragmentation protocol selection	Input DNA type	Expected library DNA fragment size peak position
2 × 100 reads	Intact DNA	200 to 400 bp
	FFPE DNA	200 to 400 bp
2 × 150 reads	Intact DNA	230 to 450 bp
	FFPE DNA	200 to 450 bp

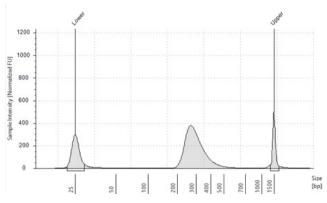

16 Determine the concentration of each library by integrating under the entire peak.

Figure 16 Post-capture library prepared from a high-quality gDNA sample analyzed using a High Sensitivity D1000 ScreenTape assay.

Figure 17 Post-capture library prepared from a typical FFPE gDNA sample analyzed using a High Sensitivity D1000 ScreenTape assay.

Figure 18 Post-capture library prepared from a low-quality FFPE gDNA sample analyzed using a High Sensitivity D1000 ScreenTape assay.

Stopping Point If you do not continue to the next step, seal the plate and store at 4° C overnight or at -20° C for prolonged storage.

Option 2: Analysis using an equivalent platform (non-automated)

Using manual preparation of the analytical samples, you can analyze the DNA samples on Agilent 2100 BioAnalyzer, Agilent 5200 Fragment Analyzer, or Agilent 4200/4150 TapeStation. Electropherograms obtained using one of these other analysis platforms are expected to show fragment size profiles similar to those shown for the Agilent 4200 TapeStation (see **Figure 16** through **Figure 18**). Verify that the electropherogram shows the expected DNA fragment size peak position (see **Table 77** for guidelines). **Table 78** includes links to assay instructions.

Analysis platform	Assay used at this step	Link to assay instructions	Amount of library sample to analyze
Agilent 4200 or 4150 TapeStation system	High Sensitivity D1000 ScreenTape	Agilent High Sensitivity D1000 Assay Quick Guide	2 µL
Agilent 2100 Bioanalyzer system	High Sensitivity DNA Kit	Agilent High Sensitivity DNA Kit Guide	1 μL
Agilent 5200, 5300, or 5400 Fragment Analyzer system	HS NGS Fragment Kit (1-6000 bp)	Agilent HS NGS Fragment Kit (1-6000 bp) Guide	2 µL

Stopping Point If you do not continue to the next step, seal the sample wells and store at 4° C overnight or at -20° C for prolonged storage.

Step 4. Pool samples for multiplexed sequencing (optional)

NOTE

Pre-Capture Pooling Workflow If you are using the pre-capture pooling workflow, then your samples were already pooled prior to hybridization with the Probe. The final captured DNA samples contain pools of either 8 or 16 indexed libraries, based on the Probe used and resulting pre-capture pooling strategy. When appropriate for your sequencing platform, the 8-plex or 16-plex samples may be further multiplexed by post-capture pooling. Determine whether to do post-capture pooling by calculating the number of indexes that can be combined per lane, according to the output specifications of the platform used, together with the amount of sequencing data required for your research design. If doing post-capture pooling, use the guidelines provided below. If samples will not be further combined in post-capture pools, proceed to **"Step 5. Prepare sequencing samples"** on page 129.

Post-Capture Pooling Workflow For the post-capture pooling workflow, the number of indexed libraries that may be multiplexed in a single sequencing lane is determined by the output specifications of the platform used, together with the amount of sequencing data required for your research design. Calculate the number of indexes that can be combined per lane, according to the capacity of your platform and the amount of sequencing data required per sample.

Combine the libraries such that each index-tagged sample is present in equimolar amounts in the pool using one of the two methods described below. **Method 2** can use the **13 Aliquot_Captures** automation protocol to pool samples.

Method 1 Dilute each indexed library to be pooled to the same final concentration (typically 4 nM to 15 nM, or the concentration of the most dilute sample) using Low TE. This dilution step is performed by manually pipetting the Low TE directly into the wells of the source plate. Then, combine equal volumes of all libraries to create the final pool in the destination plate.

Method 2 Starting with indexed libraries at different concentrations, add the appropriate volume of each library to the destination well (either manually or using the **13 Aliquot_Captures** automation protocol) to achieve equimolar concentration in the pool. Then, adjust the pool to the desired final volume by adding the appropriate volume of Low TE to each well. This volume adjustment is performed by manually pipetting the Low TE directly into the wells of the destination plate. The formula below is provided for determination of the amount of each indexed sample to add to the pool.

Volume of Index = $\frac{V(f) \times C(f)}{\# \times C(i)}$

where V(f) is the final desired volume of the pool,

C(f) is the desired final concentration of all the DNA in the pool (typically 4 nM-15 nM or the concentration of the most dilute sample)

is the number of indexes, and

C(i) is the initial concentration of each indexed sample

Table 79 shows an example of the amount of 4 index-tagged samples (of different concentrations) and Low TE needed for a final volume of 20 μ L at 10 nM DNA.

Component	V(f)	C(i)	C(f)	#	Volume to use (µL)
Sample 1	20 µL	20 nM	10 nM	4	2.5
Sample 2	20 µL	10 nM	10 nM	4	5
Sample 3	20 µL	17 nM	10 nM	4	2.9
Sample 4	20 µL	25 nM	10 nM	4	2
Low TE					7.6

Table 79 Example of volume calculation for total volume of 20 µL at 10 nM concentration

Pool samples for multiplexed sequencing using automation (optional for Method 2)

The instructions below are for **Method 2**. Alternatively, you can perform this method using an entirely manual approach rather than with the **12 Aliquot_Captures** automation protocol.

- 1 Create a .csv (comma separated value) file with the headers shown in Figure 19. The header text must not contain spaces. The table may be created using a spreadsheet application, such as Microsoft Excel software, and then saved in .csv format. The file must include rows for all 96 wells of the plate.
- 2 Enter the information requested in the header for each DNA sample. **Figure 19** shows an example spreadsheet.
 - In the SourceBC field, enter the sample plate description or barcode. The SourceBC field contents must be identical for all rows.
 - In the SourceWell field, enter each well position on the source plate containing an amplified and captured indexed library that needs to be added to a pool. Use the Eppendorf twin.tec plate containing the purified indexed libraries as the source plate.
 - In the DestinationWell field, enter the well position on the destination plate for the pool.
 - In the Volume field, enter the volume (in µL) of each indexed library to be transferred from the source well to the destination well. The volume for each library is calculated from its concentration.
 - For all empty wells on the source plate, delete the corresponding rows in the .csv file.

	Α	В	С	D
1	SourceBC	SourceWell	DestinationWell	Volume
2	abc	A1	A1	4.711292
3	abc	B1	A1	6.37105
4	abc	C1	A1	7.000448
5	abc	D1	A1	3.81144
6	abc	E1	A1	9.539072
7	abc	F1	A1	7.802747
8	abc	G1	A1	8.835171
9	abc	H1	A1	6.313131
10	abc	A2	A1	5.976286
11	abc	B2	A1	6.601183
12	abc	C2	A1	7.14449
13	abc	D2	A1	5.66431

Figure 19 Sample spreadsheets for method 1 and method 2

NOTE

You can find a sample spreadsheet in the directory C:\VWorks Workspace\NGS Option A\ XT_HS2_ILM_v.Ax.x.x\Aliquot Input File Templates\Aliquot_Captures_Template.csv (where x.x.x is the version number).

The Aliquot_Captures_template.csv file may be copied and used as a template for creating the .csv files for each Aliquot_Captures protocol run. If you are using the sample file as a template for runs with fewer than 12 columns, be sure to delete rows for any unused columns on the plate.

- 3 Load the .csv file onto the PC containing the VWorks software into a suitable directory, such as C:\VWorks Workspace\NGS Option A\XT_HS2_ILM_v.Ax.x.x\Aliquot Input File Templates.
- **4** Clear the Bravo deck of all plates and tip boxes, then wipe it down with a DNA Away decontamination wipe.
- **5** Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- 6 Load the Bravo deck according to Table 80.

Table 80 Initial Bravo deck configuration for 13 Aliquot_Captures protocol

Location	Content
5	Empty Agilent Deep Well plate
б	Empty tip box
8	New tip box
9	Purified amplified indexed libraries in Eppendorf twin.tec or Armadillo plate

- 7 On the SureSelect setup form, under **Select protocol to execute**, select the **13 Aliquot_Captures** protocol.
- 8 Verify that the **Processing Plate** selection is set to the correct plate type. See **page 23** for more information on using this segment of the form.
- 9 Click Display Initial Bravo Deck Setup.

🧭 Display Initial Bravo Deck Setup

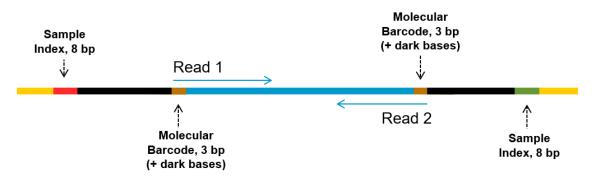
- **10** Verify that the NGS Bravo has been set up as displayed on the right side of the form.
- 11 Verify that the **Current Tip State** indicator on the form matches the configuration of unused and used tips in the tip boxes at Bravo Deck positions 2 and 8, respectively. See **page 24** for more information on using this segment of the form during the run.
- 12 Upload the .csv file created in step 1 through step 3.
 - a Click the "..." button below Select Aliquot Input File to open a directory browser window.

b Browse to the location where you saved the .csv file. Select the file and click **Open**.

The directory browser window closes, returning you to the SureSelect setup form. The selected file location is listed in the field below **Select Aliquot Input File**.

13 When verification is complete, click Run Selected Protocol.

The aliquoting protocol takes approximately 1 hour for 96 samples. When complete, the destination plate containing the library pools is on Bravo deck position 5.


14 Remove the Agilent Deep Well plate from position 5 of the Bravo deck.

15 Add the appropriate volume of Low TE to each well to bring the pool to the necessary DNA concentration for sequencing.

If you store the library before sequencing, add Tween 20 to 0.1% v/v and store at -20° C short term.

Step 5. Prepare sequencing samples

The final SureSelect XT HS2 library pool is ready for direct sequencing using standard Illumina paired-end primers and chemistry. Each fragment in the prepared library contains one target insert surrounded by sequence motifs required for multiplexed sequencing using the Illumina platform, as shown in **Figure 20**.

Figure 20 Content of SureSelect XT HS2 sequencing library. Each fragment contains one target insert (blue) surrounded by the Illumina paired-end sequencing elements (black), the dual sample indexes (red and green), molecular barcodes (brown) and the library PCR primers (yellow).

Libraries can be sequenced on the Illumina HiSeq, MiSeq, NextSeq or NovaSeq platform using the run type and chemistry combinations shown in **Table 81**.

Proceed to cluster amplification using the appropriate Illumina Paired-End Cluster Generation Kit. See **Table 81** for kit configurations compatible with the recommended read length.

The optimal seeding concentration for SureSelect XT HS2 target-enriched libraries varies according to sequencing platform, run type, and Illumina kit version. See **Table 81** for guidelines. Seeding concentration and cluster density may also need to be optimized based on the DNA fragment size range for the library and on the desired output and data quality. Begin optimization using a seeding concentration in the middle of the range listed in **Table 81**.

Follow Illumina's recommendation for a PhiX control in a low-concentration spike-in for improved sequencing quality control.

Table 81	Illumina Kit Configuration Selection Guidelines
----------	---

Platform	Run Type	Read Length	SBS Kit Configuration	Chemistry	Seeding Concentration
HiSeq 2500	Rapid Run	2 × 100 bp	200 Cycle Kit	v2	9–10 pM
HiSeq 2500	High Output	2 × 100 bp	250 Cycle Kit	v4	12-14 pM
MiSeq	All Runs	2 × 100 bp or 2 × 150 bp	300 Cycle Kit	v2	9-10 pM
MiSeq	All Runs	2 × 75 bp	150 Cycle Kit	v3	12-16 pM
NextSeq 500/550	All Runs	2 × 100 bp or 2 × 150 bp	300 Cycle Kit	v2.5	1.2-1.5 pM
HiSeq 3000/4000	All Runs	2 × 100 bp or 2 × 150 bp	300 Cycle Kit	v1	300-400 pM
NovaSeq 6000	Standard Workflow Runs	2 × 100 bp or 2 × 150 bp	300 Cycle Kit	v1.0 or v1.5	300-600 pM
NovaSeq 6000	Xp Workflow Runs	2 × 100 bp or 2 × 150 bp	300 Cycle Kit	v1.0 or v1.5	200-400 pM

Step 6. Do the sequencing run and analyze the data

The guidelines below provide an overview of SureSelect XT HS2 library sequencing run setup and analysis considerations. Links are provided for additional details for various NGS platforms and analysis pipeline options.

- Each of the sample-level indexes requires an 8-bp index read. For complete index sequence information, see **Table 92** on page 145 through **Table 98** on page 151.
- For the HiSeq, NextSeq, and NovaSeq platforms, set up the run using the instrument's user interface, following the guidelines on **page 131**.
- For the MiSeq platform, set up the run using Illumina Experiment Manager (IEM) using the steps detailed on **page 132** to **page 133** to generate a custom sample sheet.
- Demultiplex using Illumina's bcl2fastq software to generate paired end reads based on the dual indexes and remove sequences with incorrectly paired P5 and P7 indexes.
- The MBC sequence and dark bases are located at the 5' end of both Read 1 and Read 2. Use the Agilent Genomics NextGen Toolkit (AGeNT) for molecular barcode extraction and trimming (see page 135 for more information). If your sequence analysis pipeline excludes MBCs and is incompatible with AGeNT, you can trim or mask the first five bases from each read before alignment as described in the Note on page 135.
- Before aligning reads to the reference genome, Illumina adaptor sequences should be trimmed from the reads using Agilent's AGeNT trimmer module, which properly accounts for the degenerate MBCs in the adaptor sequence. See **page 135** for more information. Do not use the adaptor trimming options in Illumina Experiment Manager (IEM). Make sure any IEM adaptor trimming option check boxes are cleared (deselected) when setting up the sequencing run.

HiSeq/NextSeq/NovaSeq platform sequencing run setup guidelines

Set up sequencing runs using the instrument control software interface, using the settings shown in **Table 82**. For HiSeq runs, select *Dual Index* on the *Run Configuration* screen of the instrument control software interface and enter the Cycles settings in **Table 82**.

For the NextSeq or NovaSeq platform, open the *Run Setup* screen of the instrument control software interface and enter the **Read Length** settings in **Table 82**. In the **Custom Primers** section, clear (do **not** select) the check boxes for all primers (*Read 1, Read 2, Index 1* and *Index 2*).

Run Segment	Cycles/Read Length
Read 1	100 or 150
Index 1 (i7)	8
Index 2 (i5)	8
Read 2	100 or 150

Table 82 Run settings

MiSeq platform sequencing run setup guidelines

Use the Illumina Experiment Manager (IEM) software to generate a custom Sample Sheet according to the guidelines below. Once a Sample Sheet has been generated, index sequences need to be manually changed to the SureSelect XT HS2 indexes used for each sample. See **Table 92** on page 145 through **Table 98** on page 151 for nucleotide sequences of the SureSelect XT HS2 index pairs.

Set up a custom Sample Sheet:

S

- 1 In the IEM software, create a Sample Sheet for the MiSeq platform using the following Workflow selections.
 - Under Category, select Other.
 - Under Application, select FASTQ Only.
- 2 On the **Workflow Parameters** screen, enter the run information, making sure to specify the key parameters highlighted below. In the *Library Prep Workflow* field, select **TruSeq Nano DNA.** In the *Index Adapters* field, select **TruSeq DNA CD Indexes (96 Indexes)**. Clear both adaptor-trimming checkboxes under *FASTQ Only Workflow-Specific Settings*, since adaptor trimming must be performed using Agilent's AGeNT software (see **page 135**).

If TruSeq Nano DNA is not available in the Sample Prep Kit field, instead select TruSeq HT.

ample Sheet Wizard - Workflow Pa	arameters
FASTQ Only Run Settings Reagent Cartridge Barcode* MS5871368-300V2 Library Prep Workflow Index Adapters Index Adapters Index Reads Index Read Type Index Read 1 Cycles Read 1 Cycles Read 1 Cycles Read 2 Index Read 1 Index Read 2 Index Read 1 Index Read 2 Index Read 1 Index Read 1 Index Read 2 Index Read 1 Index Read 1 Index Read 2 Index Read 1 Index Read 1 Index Read 2 Index Read 1 Index Read 2 Index Read 1	FASTQ Only Workflow-Specific Settings Custom Primer for Read 1 Custom Primer for Index Custom Primer for Read 2 Reverse Complement Use Adapter Trimming Use Adapter Trimming Read 2

3 Using the **Sample Sheet Wizard**, set up a New Plate, entering the required information for each sample to be sequenced. In the **I7 Sequence** column, assign each sample to any of the Illumina i7 indexes. The index will be corrected to the i7 sequence from the SureSelect XT HS2 index pair at a later stage.

Likewise, in the **I5 Sequence** column, assign any of the Illumina i5 indexes, to be corrected to the i5 sequence from the SureSelect XT HS2 index pair at a later stage.

				nager			_	_		
Sample ID* Sample Name Plate Well Index1 (l7)* I7 Sequence Index2 (l5)* I5 Sequence Sample Project Descrit 1 1 Plate1 A01 D701 ATTACTCG D501 TATAGCCT Control Control				izard	- Samp	le Sele	ection			
2 Plate1 A02 D702 TCCGGAGA D501 TATAGCCT 3 9 late1 A03 D703 CGCTCATT D501 TATAGCCT 4 Plate1 A04 D704 GAGATTCC D501 TATAGCCT										× - 1
3 3 Plate1 A03 D703 CGCTCATT D501 TATAGCCT 4 4 Plate1 A04 D704 GAGATTCC D501 TATAGCCT	Sample ID*	Sample Name	Plate	Well	Index1 (I7)*	17 Sequence) Index2 (15)*	15 Sequence	Sample Project	Descrip
4 4 Plate1 A04 D704 GAGATTCC D501 TATAGCCT	Sample ID* 1	Sample Name	100000				<u> </u>		Sample Project	Descrip
	Sample ID* 1 2	1	Plate1	A01	D701	ATTACTCG	D501	TATAGCCT	Sample Project	Descrip
5 5 Plate1 A05 D705 ATTCAGAA D501 TATAGCCT	Sample ID* 1 2 3	1 2	Plate1 Plate1	A01 A02	D701 D702	ATTACTCG TCCGGAGA	D501 D501	TATAGCCT TATAGCCT	Sample Project	Descrip
	Sample ID* 1 2 3 4	1 2 3	Plate1 Plate1 Plate1 Plate1	A01 A02 A03	D701 D702 D703	ATTACTCG TCCGGAGA CGCTCATT	D501 D501 D501	TATAGCCT TATAGCCT TATAGCCT	Sample Project	Descrip

4 Finish the sample sheet setup tasks and save the sample sheet file.

Editing the Sample Sheet to include SureSelect XT HS2 dual indexes

- Open the Sample Sheet file in a text editor and edit the i7 and i5 index information for each sample in columns 5–8 (highlighted below). See see Table 92 on page 145 through Table 98 on page 151 for nucleotide sequences of the SureSelect XT HS2 indexes.
- In column 5 under **I7_Index_ID**, enter the SureSelect XT HS2 index pair number assigned to the sample. In column 6 under **index**, enter the corresponding P7 index sequence.
- In column 7 under I5_Index_ID, enter the SureSelect XT HS2 index pair number assigned to the sample. In column 8 under index2, enter the corresponding P5 index sequence.
- If the run includes more than 96 samples, the sample sheet may be edited to include additional sample rows containing the assigned SureSelect XT HS2 index pair sequences in column 6 (P7 index) and column 8 (P5 index).

[Header]									
EMFileVe	5								1
Experimer	XT_Low_I	nput							1
Date	*****								
Workflow	Generate	ASTQ							3
Applicatio	FASTQ On	ly							
Instrumer	MiSeq								
Assay	TruSeq Na	no DNA							
Index Ada	TruSeq DN	A CD Inde	xes (96 Ind	lexes)					
Descriptio	on								-
Chemistry	Amplicon								
[Reads]									
100									
100									
[Settings]									
ReverseCo	0								
[Data]									
Sample_I	Sample_N	Sample_P	Sample_V	Index_Pla	17_Index_ID	index	15_Index_ID	index2	Sample
Sample_1	Sample1	Plate1	A01	A01	A01	GTCTGTCA	A01	CAACGAGC	٩
Sample_2	Sample2	Plate1	B01	B01	B01	TGAAGAGA	B01	GTCGACAA	
Sample_3	Sample3	Plate1	C01	C01_	C01	TTCACGCA	C01	AAGAGCCT	_ 5

Figure 21 Sample sheet for SureSelect XT HS2 library sequencing

5 Save the edited Sample Sheet in an appropriate file location for use in the run.

Sequence analysis resources

Guidelines are provided below for typical NGS analysis pipeline steps appropriate for SureSelect XT HS2 library data analysis. Your NGS analysis pipeline may vary.

Use the Illumina bcl2fastq software to generate paired end reads by demultiplexing sequences based on the dual indexes and to remove sequences with incorrectly paired P5 and P7 indexes.

The demultiplexed FASTQ data needs to be pre-processed to remove sequencing adaptors and extract the molecular barcode (MBC) sequences using the Agilent Genomics NextGen Toolkit (AGeNT). AGeNT is a set of Java-based software modules that provide MBC pre-processing adaptor trimming and duplicate read identification. This toolkit is designed to enable building, integrating, maintaining, and troubleshooting internal analysis pipelines for users with bioinformatics expertise. For additional information and to download this toolkit, visit the AGeNT page at www.agilent.com.

NOTE

If your sequence analysis pipeline excludes MBCs, you can remove the first 5 bases from Read 1 and Read 2 by either masking or trimming before proceeding to further analysis. To remove during demultiplexing via masking, include the base mask **N5Y*,I8,I8,N5Y*** (where * may be replaced with the actual read length, matching the read length value in the RunInfo.xml file). Alternatively, the first 5 bases may be trimmed from the demultiplexed fastq files using a suitable processing tool of your choice, such as seqtk. The AGeNT trimmer module can also be used to remove the MBCs and properly remove adaptor sequences. Standard adaptor trimmers will fail to remove the MBC sequences from the opposite adaptor (refer to **Figure 20**), which may affect alignment quality.

The trimmed reads should be aligned, and MBC tags added to the aligned BAM file using a suitable tool such as the BWA-MEM. Once alignment and tagging are complete, the AGeNT LocatIt module may be used to generate consensus reads and mark or remove duplicates. The resulting BAM files are ready for downstream analysis including variant discovery.

7

Appendix: Using FFPE-derived DNA Samples

Protocol modifications for FFPE Samples **138** Methods for FFPE Sample Qualification **139** Sequencing Output Recommendations for FFPE Samples **140**

This chapter summarizes the protocol modifications to apply to FFPE samples based on the integrity of the FFPE sample DNA.

Protocol modifications for FFPE Samples

Protocol modifications that should be applied to FFPE samples are summarized in Table 83.

Workflow Step and page	Parameter	Condition for non-FFPE Samples	Condition for FFPE Samples
gDNA Sample Preparation page 46	Qualification of DNA Integrity	Not required	Required
Enzymatic fragmentation duration page 49	Duration of the 37°C fragmentation step	15–25 minutes, depending on read length requirements	25 minutes
DNA input for Library Preparation page 47	Input amount and means of quantification	10 ng to 200 ng, quantified by Qubit assay	Based on determined DNA integrity (see Table 17 on page 47 and Table 18 on page 47)
DNA Shearing page 55	Mode of DNA Shearing	2 × 120 seconds	240 seconds (continuous)
Pre-capture PCR page 65	Cycle number	8-11	11–14
Sequencing page 140	Output augmentation	Per project requirements	1× to 10× based on determined DNA integrity (see Table 84 and Table 85 on page 140)

Table 83	Summary of protoco	I modifications for FFPE samples
----------	--------------------	----------------------------------

Methods for FFPE Sample Qualification

DNA integrity may be assessed using the Agilent NGS FFPE QC Kit or using the Agilent 4200 TapeStation system and Genomic DNA ScreenTape.

The Agilent NGS FFPE QC Kit provides a qPCR-based assay for DNA sample integrity determination. Results include the precise quantity of amplifiable DNA in the sample to allow direct normalization of input DNA amount and a $\Delta\Delta$ Cq DNA integrity score used to design other protocol modifications.

The Agilent 4200 TapeStation system, combined with the Genomic DNA ScreenTape assay, provides a electrophoresis-based method for determination of a DNA Integrity Number (DIN) score used to estimate amount of input DNA required for sample normalization and to design other protocol modifications.

Sequencing Output Recommendations for FFPE Samples

After determining the amount of sequencing output required for intact DNA samples to meet the goals of your project, use the guidelines below to determine the amount of extra sequencing output required for FFPE DNA samples.

Samples qualified using $\Delta\Delta$ **Cq** For samples qualified based on the $\Delta\Delta$ Cq DNA integrity score, use the guidelines in **Table 84**. For example, if your workflow demands 100 Mb output for intact DNA samples to achieve the required coverage, an FFPE sample with $\Delta\Delta$ Cq score of 1 requires 200–400 Mb of sequencing output to achieve the same coverage.

Table 84 Recommended sequencing augmentation for FFPE-derived DNA samples

$\Delta\Delta$ Cq value	Recommended fold increase for FFPE-derived sample
<0.5 No extra sequencing output	
between 0.5 and 2	Increase sequencing allocation by 2× to 4×
>2 Increase sequencing allocation by 5× to 10× or more	

Samples qualified using DIN For samples qualified based on the Genomic DNA ScreenTape assay DIN integrity score, use the guidelines in **Table 85**. For example, if your workflow demands 100 Mb output for intact DNA samples to achieve the required coverage, an FFPE sample with DIN score of 4 requires approximately 200–400 Mb of sequencing output to achieve the same coverage.

Table 85 Recommended sequencing augmentation for FFPE-derived DNA samples

DIN value	Recommended fold increase for FFPE-derived sample
≥8	No extra sequencing output
between 3 and 8 Increase sequencing allocation by 2× to 4×	
<3	Increase sequencing allocation by 5× to 10× or more

SureSelect XT HS2 DNA System Protocol

8 Reference

Kit Contents SureSelect XT HS2 Index Primer Pair Information Index Primer Pair Plate Maps Quick Reference Tables for Master Mixes and Source Plates Quick Reference Tables for Other Reagent Volumes Troubleshooting Guide

This chapter contains reference information, including component kit contents, index sequences, and troubleshooting information.

Kit Contents

The SureSelect XT HS2 DNA System protocol using the Agilent NGS Bravo uses the kits listed in **Table 86**. Detailed contents of each of the multi-part component kits listed in **Table 86** are shown in **Table 87** through **Table 90** on the following pages.

Table 86 Component Kits

Kit Name (p/n)	Component Kit Name	Component Kit p/n	Storage Condition
SureSelect XT HS2 DNA Library Preparation Kit for	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR)	5500-0147	-20°C
ILM (Pre PCR), 96 Reactions (G9985A through G9985D)	SureSelect XT HS2 Index Primer Pairs for ILM (Pre PCR)	5191-5688 (Index Pairs 1–96), 5191-5689 (Index Pairs 97–192), 5191-5690 (Index Pairs 193–288), OR 5191-5691 (Index Pairs 289–384)	-20°C
SureSelect XT HS2 DNA Target Enrichment Kit (Post	SureSelect Target Enrichment Kit, ILM Hyb Module, Box 1 (Post PCR)	5191-6689	Room Temperature
PCR), 12 Hybs (G9987A)	SureSelect XT HS2 Target Enrichment Kit ILM Hyb Module, Box 2 (Post PCR)	5191-6690	-20°C
SureSelect XT HS2 DNA Reagent Kit, 96 Reactions	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR)	5500-0147	-20°C
(G9983A through G9983D; or G9984A through G9984D with AMPure XP/	SureSelect XT HS2 Index Primer Pairs for ILM (Pre PCR)	5191-5688 through 5191-5691	-20°C
Streptavidin Beads)	SureSelect Target Enrichment Kit, ILM Hyb Module, Box 1 (Post PCR)	5190-9687	Room Temperature
	SureSelect XT HS2 Target Enrichment Kit ILM Hyb Module, Box 2 (Post PCR)	5191-6688	-20°C
	SureSelect DNA AMPure XP Beads (included with kits G9984A through G9984D)	5191-5740	+4°C
	SureSelect Streptavidin Beads (included with kits G9984A through G9984D)	5191-5742	+4°C
SureSelect Enzymatic Fragm	entation Kit, 96 Reactions Automation (5191-6	764)	-20°C

Kit Component	Format
End Repair-A Tailing Enzyme Mix	tube with orange cap
End Repair-A Tailing Buffer	bottle
T4 DNA Ligase	tube with blue cap
Ligation Buffer	bottle
SureSelect XT HS2 Adaptor Oligo Mix	tube with white cap
Herculase II Fusion DNA Polymerase	tube with red cap
5× Herculase II Reaction Buffer with dNTPs	tube with clear cap

 Table 87
 SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR) Content

Table 88	SureSelect XT HS2 Index Primer Pairs for ILM (Pre PCR) Conter	nt
----------	---	----

Kit Component	Format
SureSelect XT HS2 Index Primer Pairs for ILM (Pre PCR)	Orange 96-well plate (index pairs 1–96), OR Blue 96-well plate (index pairs 97–192), OR Green 96-well plate (index pairs 193–288), OR Red 96-well plate (index pairs 289–384)

Table 89	SureSelect 1	Farget Enrichme	nt Kit, ILM I	Hyb Module Box '	I (Post PCR) Content

Kit Component	Format
SureSelect Binding Buffer	bottle
SureSelect Wash Buffer 1	bottle
SureSelect Wash Buffer 2	bottle

Table 90 SureSelect XT HS2 Target Enrichment Kit, ILM Hyb Module Box 2 (Post PCR) Content

Kit Component	Format
SureSelect Fast Hybridization Buffer	bottle
SureSelect XT HS2 Blocker Mix	tube with blue cap
SureSelect RNase Block	tube with purple cap
SureSelect Post-Capture Primer Mix	tube with clear cap
Herculase II Fusion DNA Polymerase	tube with red cap
5× Herculase II Reaction Buffer with dNTPs	tube with clear cap

SureSelect XT HS2 Index Primer Pair Information

The SureSelect XT HS2 Index Primer Pairs are provided pre-combined. Each member of the primer pair contains a unique 8-bp P7 or P5 index, resulting in dual-indexed NGS libraries. One primer pair is provided in each well of 96-well plates. Each well contains a single-use aliquot of a specific pair of P7 plus P5 primers.

The nucleotide sequence of the index portion of each primer is provided in **Table 92** through **Table 98**. P7 indexes are shown in forward orientation, applicable to any of the supported Illumina platforms. P5 indexes are shown in two orientations (forward and reverse complement) for use with different platforms and sequencing run setup and management tools, e.g., Local Run Manager and Instrument Run Setup. Illumina sequencing platforms and their P5 sequencing orientation are shown in **Table 91**. Correct representation of the P5 index orientation in sample sheets or during sequencing run setup is crucial to successful demultiplexing. Refer to Illumina support documentation and resources to determine the correct P5 index orientation for your application.

P5 Index Orientation	Platform	
Forward	NovaSeq 6000 with v1.0 chemistry MiSeq HiSeq 2500	
Reverse Complement*	NovaSeq 6000 with v1.5 chemistry NextSeq 500/550/1000/2000 HiSeq 3000/4000 iSeq 100 MiniSeq HiSeq X	

Table 91 P5 index sequencing orientation by Illumina platform

* Some run setup and management tools used with these platforms automatically create the reverse complement sequence for the P5 index sequence entered for the run. Be sure to consult Illumina's support documentation for the combination of platform and tools used in your pipeline to determine the correct index orientation to enter during run setup.

Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
1	A01	CAAGGTGA	ATGGTTAG	CTAACCAT	25	A04	AGATGGAT	TGGCACCA	TGGTGCCA
2	B01	TAGACCAA	CAAGGTGA	TCACCTTG	26	B04	GAATTGTG	AGATGGAT	ATCCATCT
3	C01	AGTCGCGA	TAGACCAA	TTGGTCTA	27	C04	GAGCACTG	GAATTGTG	CACAATTC
4	D01	CGGTAGAG	AGTCGCGA	TCGCGACT	28	D04	GTTGCGGA	GAGCACTG	CAGTGCTC
5	E01	TCAGCATC	AAGGAGCG	CGCTCCTT	29	E04	AATGGAAC	GTTGCGGA	TCCGCAAC
6	F01	AGAAGCAA	TCAGCATC	GATGCTGA	30	F04	TCAGAGGT	AATGGAAC	GTTCCATT
7	G01	GCAGGTTC	AGAAGCAA	TTGCTTCT	31	G04	GCAACAAT	TCAGAGGT	ACCTCTGA
8	H01	AAGTGTCT	GCAGGTTC	GAACCTGC	32	H04	GTCGATCG	GCAACAAT	ATTGTTGC
9	A02	CTACCGAA	AAGTGTCT	AGACACTT	33	A05	ATGGTAGC	GTCGATCG	CGATCGAC
10	B02	TAGAGCTC	CTACCGAA	TTCGGTAG	34	B05	CGCCAATT	ATGGTAGC	GCTACCAT
11	C02	ATGTCAAG	TAGAGCTC	GAGCTCTA	35	C05	GACAATTG	CGCCAATT	AATTGGCG
12	D02	GCATCATA	ATGTCAAG	CTTGACAT	36	D05	ATATTCCG	GACAATTG	CAATTGTC
13	E02	GACTTGAC	GCATCATA	TATGATGC	37	E05	TCTACCTC	ATATTCCG	CGGAATAT
14	F02	CTACAATG	GACTTGAC	GTCAAGTC	38	F05	TCGTCGTG	TCTACCTC	GAGGTAGA
15	G02	TCTCAGCA	CTACAATG	CATTGTAG	39	G05	ATGAGAAC	TCGTCGTG	CACGACGA
16	H02	AGACACAC	TCTCAGCA	TGCTGAGA	40	H05	GTCCTATA	ATGAGAAC	GTTCTCAT
17	A03	CAGGTCTG	AGACACAC	GTGTGTCT	41	A06	AATGACCA	GTCCTATA	TATAGGAC
18	B03	AATACGCG	CAGGTCTG	CAGACCTG	42	B06	CAGACGCT	AATGACCA	TGGTCATT
19	C03	GCACACAT	AATACGCG	CGCGTATT	43	C06	TCGAACTG	CAGACGCT	AGCGTCTG
20	D03	CTTGCATA	GCACACAT	ATGTGTGC	44	D06	CGCTTCCA	TCGAACTG	CAGTTCGA
21	E03	ATCCTCTT	CTTGCATA	TATGCAAG	45	E06	TATTCCTG	CGCTTCCA	TGGAAGCG
22	F03	GCACCTAA	ATCCTCTT	AAGAGGAT	46	F06	CAAGTTAC	TATTCCTG	CAGGAATA
23	G03	TGCTGCTC	GCACCTAA	TTAGGTGC	47	G06	CAGAGCAG	CAAGTTAC	GTAACTTG
24	H03	TGGCACCA	TGCTGCTC	GAGCAGCA	48	H06	CGCGCAAT	CAGAGCAG	CTGCTCTG

 Table 92
 SureSelect XT HS2 Index Primer Pairs 1-48, provided in orange 96-well plate

Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
49	A07	TGAGGAGT	CGCGCAAT	ATTGCGCG	73	A10	AACGCATT	ATAGTGAC	GTCACTAT
50	B07	ATGACGAA	TGAGGAGT	ACTCCTCA	74	B10	CAGTTGCG	AACGCATT	AATGCGTT
51	C07	TACGGCGA	ATGACGAA	TTCGTCAT	75	C10	TGCCTCGA	CAGTTGCG	CGCAACTG
52	D07	AGCGAGTT	TACGGCGA	TCGCCGTA	76	D10	AAGGCTTA	TGCCTCGA	TCGAGGCA
53	E07	TGTATCAC	AGCGAGTT	AACTCGCT	77	E10	GCAATGAA	AAGGCTTA	TAAGCCTT
54	F07	GATCGCCT	TGTATCAC	GTGATACA	78	F10	AAGAACCT	GCAATGAA	TTCATTGC
55	G07	GACTCAAT	GATCGCCT	AGGCGATC	79	G10	CTGTGCCT	AAGAACCT	AGGTTCTT
56	H07	CAGCTTGC	GACTCAAT	ATTGAGTC	80	H10	TACGTAGC	CTGTGCCT	AGGCACAG
57	A08	AGCTGAAG	CAGCTTGC	GCAAGCTG	81	A11	AAGTGGAC	TACGTAGC	GCTACGTA
58	B08	ATTCCGTG	AGCTGAAG	CTTCAGCT	82	B11	CAACCGTG	AAGTGGAC	GTCCACTT
59	C08	TATGCCGC	ATTCCGTG	CACGGAAT	83	C11	CTGTTGTT	CAACCGTG	CACGGTTG
60	D08	TCAGCTCA	TATGCCGC	GCGGCATA	84	D11	GCACGATG	CTGTTGTT	AACAACAG
61	E08	AACTGCAA	TCAGCTCA	TGAGCTGA	85	E11	GTACGGAC	GCACGATG	CATCGTGC
62	F08	ATTAGGAG	AACTGCAA	TTGCAGTT	86	F11	CTCCAAGC	GTACGGAC	GTCCGTAC
63	G08	CAGCAATA	ATTAGGAG	СТССТААТ	87	G11	TAGTCTGA	CTCCAAGC	GCTTGGAG
64	H08	GCCAAGCT	CAGCAATA	TATTGCTG	88	H11	TTCGCCGT	TAGTCTGA	TCAGACTA
65	A09	TCCGTTAA	GCCAAGCT	AGCTTGGC	89	A12	GAACTAAG	ATACGAAG	CTTCGTAT
66	B09	GTGCAACG	TCCGTTAA	TTAACGGA	90	B12	AAGCCATC	GAGATTCA	TGAATCTC
67	C09	AGTAACGC	GTGCAACG	CGTTGCAC	91	C12	AACTCTTG	AAGCCATC	GATGGCTT
68	D09	CATAGCCA	AGTAACGC	GCGTTACT	92	D12	GTAGTCAT	AACTCTTG	CAAGAGTT
69	E09	CACTAGTA	CATAGCCA	TGGCTATG	93	E12	CTCGCTAG	GTAGTCAT	ATGACTAC
70	F09	TTAGTGCG	CACTAGTA	TACTAGTG	94	F12	AGTCTTCA	CAGTATCA	TGATACTG
71	G09	TCGATACA	TTAGTGCG	CGCACTAA	95	G12	TCAAGCTA	CTTCGTAC	GTACGAAG
72	H09	ATAGTGAC	TCGATACA	TGTATCGA	96	H12	CTTATCCT	TCAAGCTA	TAGCTTGA

 Table 93
 SureSelect XT HS2 Index Primer Pairs 49–96, provided in orange 96-well plate

Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
97	A01	TCATCCTT	CTTATCCT	AGGATAAG	121	A04	CAGGCAGA	AGACGCCT	AGGCGTCT
98	B01	AACACTCT	TCATCCTT	AAGGATGA	122	B04	TCCGCGAT	CAGGCAGA	TCTGCCTG
99	C01	CACCTAGA	AACACTCT	AGAGTGTT	123	C04	CTCGTACG	TCCGCGAT	ATCGCGGA
100	D01	AGTTCATG	CACCTAGA	TCTAGGTG	124	D04	CACACATA	CTCGTACG	CGTACGAG
101	E01	GTTGGTGT	AGTTCATG	CATGAACT	125	E04	CGTCAAGA	CACACATA	TATGTGTG
102	F01	GCTACGCA	GTTGGTGT	ACACCAAC	126	F04	TTCGCGCA	CGTCAAGA	TCTTGACG
103	G01	TCAACTGC	GCTACGCA	TGCGTAGC	127	G04	CGACTACG	TTCGCGCA	TGCGCGAA
104	H01	AAGCGAAT	TCAACTGC	GCAGTTGA	128	H04	GAAGGTAT	CGACTACG	CGTAGTCG
105	A02	GTGTTACA	AAGCGAAT	ATTCGCTT	129	A05	TTGGCATG	GAAGGTAT	ATACCTTC
106	B02	CAAGCCAT	GTGTTACA	TGTAACAC	130	B05	CGAATTCA	TTGGCATG	CATGCCAA
107	C02	CTCTCGTG	CAAGCCAT	ATGGCTTG	131	C05	TTAGTTGC	CGAATTCA	TGAATTCG
108	D02	TCGACAAC	CTCTCGTG	CACGAGAG	132	D05	GATGCCAA	TTAGTTGC	GCAACTAA
109	E02	TCGATGTT	TCGACAAC	GTTGTCGA	133	E05	AGTTGCCG	GATGCCAA	TTGGCATC
110	F02	CAAGGAAG	TCGATGTT	AACATCGA	134	F05	GTCCACCT	AGTTGCCG	CGGCAACT
111	G02	ATTGATGC	AGAGAATC	GATTCTCT	135	G05	ATCAAGGT	GTCCACCT	AGGTGGAC
112	H02	TCGCAGAT	TTGATGGC	GCCATCAA	136	H05	GAACCAGA	ATCAAGGT	ACCTTGAT
113	A03	GCAGAGAC	TCGCAGAT	ATCTGCGA	137	A06	CATGTTCT	GAACCAGA	TCTGGTTC
114	B03	CTGCGAGA	GCAGAGAC	GTCTCTGC	138	B06	TCACTGTG	CATGTTCT	AGAACATG
115	C03	CAACCAAC	CTGCGAGA	TCTCGCAG	139	C06	ATTGAGCT	TCACTGTG	CACAGTGA
116	D03	ATCATGCG	CAACCAAC	GTTGGTTG	140	D06	GATAGAGA	ATTGAGCT	AGCTCAAT
117	E03	TCTGAGTC	ATCATGCG	CGCATGAT	141	E06	TCTAGAGC	GATAGAGA	TCTCTATC
118	F03	TCGCCTGT	TCTGAGTC	GACTCAGA	142	F06	GAATCGCA	TCTAGAGC	GCTCTAGA
119	G03	GCGCAATT	TCGCCTGT	ACAGGCGA	143	G06	CTTCACGT	GAATCGCA	TGCGATTC
120	H03	AGACGCCT	GCGCAATT	AATTGCGC	144	H06	CTCCGGTT	CTTCACGT	ACGTGAAG

 Table 94
 SureSelect XT HS2 Index Primer Pairs 97–144, provided in blue 96-well plate

Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
145	A07	TGTGACTA	CTCCGGTT	AACCGGAG	169	A10	CGCTCAGA	CTAACAAG	CTTGTTAG
146	B07	GCTTCCAG	TGTGACTA	TAGTCACA	170	B10	TAACGACA	CGCTCAGA	TCTGAGCG
147	C07	CATCCTGT	GCTTCCAG	CTGGAAGC	171	C10	CATACTTG	TAACGACA	TGTCGTTA
148	D07	GTAATACG	CATCCTGT	ACAGGATG	172	D10	AGATACGA	CATACTTG	CAAGTATG
149	E07	GCCAACAA	GTAATACG	CGTATTAC	173	E10	AATCCGAC	AGATACGA	TCGTATCT
150	F07	CATGACAC	GCCAACAA	TTGTTGGC	174	F10	TGAAGTAC	AATCCGAC	GTCGGATT
151	G07	TGCAATGC	CATGACAC	GTGTCATG	175	G10	CGAATCAT	TGAAGTAC	GTACTTCA
152	H07	CACATTCG	TGCAATGC	GCATTGCA	176	H10	TGATTGGC	CGAATCAT	ATGATTCG
153	A08	CAATCCGA	CACATTCG	CGAATGTG	177	A11	TCGAAGGA	TGATTGGC	GCCAATCA
154	B08	CATCGACG	CAATCCGA	TCGGATTG	178	B11	CAGTCATT	TCGAAGGA	TCCTTCGA
155	C08	GTGCGCTT	CATCGACG	CGTCGATG	179	C11	CGCGAACA	CAGTCATT	AATGACTG
156	D08	ATAGCGTT	GTGCGCTT	AAGCGCAC	180	D11	TACGGTTG	CGCGAACA	TGTTCGCG
157	E08	GAGTAAGA	ATAGCGTT	AACGCTAT	181	E11	AGAACCGT	TACGGTTG	CAACCGTA
158	F08	CTGACACA	GAGTAAGA	TCTTACTC	182	F11	AGGTGCTT	AGAACCGT	ACGGTTCT
159	G08	ATACGTGT	CTGACACA	TGTGTCAG	183	G11	ATCGCAAC	AGGTGCTT	AAGCACCT
160	H08	GACCGAGT	ATACGTGT	ACACGTAT	184	H11	GCCTCTCA	ATCGCAAC	GTTGCGAT
161	A09	GCAGTTAG	GACCGAGT	ACTCGGTC	185	A12	TCGCGTCA	GCCTCTCA	TGAGAGGC
162	B09	CGTTCGTC	GCAGTTAG	CTAACTGC	186	B12	GAGTGCGT	TCGCGTCA	TGACGCGA
163	C09	CGTTAACG	CGTTCGTC	GACGAACG	187	C12	CGAACACT	GCATAAGT	ACTTATGC
164	D09	TCGAGCAT	CGTTAACG	CGTTAACG	188	D12	TAAGAGTG	AGAAGACG	CGTCTTCT
165	E09	GCCGTAAC	TCGAGCAT	ATGCTCGA	189	E12	TGGATTGA	TAAGAGTG	CACTCTTA
166	F09	GAGCTGTA	GCCGTAAC	GTTACGGC	190	F12	AGGACATA	TGGATTGA	TCAATCCA
167	G09	AGGAAGAT	GAGCTGTA	TACAGCTC	191	G12	GACATCCT	AGGACATA	TATGTCCT
168	H09	CTAACAAG	AGGAAGAT	ATCTTCCT	192	H12	GAAGCCTC	GACATCCT	AGGATGTC

 Table 95
 SureSelect XT HS2 Index Primer Pairs 145–192, provided in blue 96-well plate

Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
193	A01	GTCTCTTC	GAAGCCTC	GAGGCTTC	217	A04	GCGGTATG	CACGAGCT	AGCTCGTG
194	B01	AGTCACTT	GTCTCTTC	GAAGAGAC	218	B04	TCTATGCG	GCGGTATG	CATACCGC
195	C01	AGCATACA	AGTCACTT	AAGTGACT	219	C04	AGGTGAGA	TCTATGCG	CGCATAGA
196	D01	TCAGACAA	AGCATACA	TGTATGCT	220	D04	CACAACTT	AGGTGAGA	TCTCACCT
197	E01	TTGGAGAA	TCAGACAA	TTGTCTGA	221	E04	TTGTGTAC	CACAACTT	AAGTTGTG
198	F01	TTAACGTG	TTGGAGAA	TTCTCCAA	222	F04	TCACAAGA	TTGTGTAC	GTACACAA
199	G01	CGTCTGTG	TTAACGTG	CACGTTAA	223	G04	GAAGACCT	TCACAAGA	TCTTGTGA
200	H01	AACCTAAC	CGTCTGTG	CACAGACG	224	H04	AGTTCTGT	GAAGACCT	AGGTCTTC
201	A02	AGAGTGCT	AACCTAAC	GTTAGGTT	225	A05	GCAGTGTT	AGTTCTGT	ACAGAACT
202	B02	TTATCTCG	AGAGTGCT	AGCACTCT	226	B05	AGGCATGC	GCAGTGTT	AACACTGC
203	C02	CATCAGTC	TTATCTCG	CGAGATAA	227	C05	AAGGTACT	AGGCATGC	GCATGCCT
204	D02	AAGCACAA	CATCAGTC	GACTGATG	228	D05	CACTAAGT	AAGGTACT	AGTACCTT
205	E02	CAGTGAGC	AAGCACAA	TTGTGCTT	229	E05	GAGTCCTA	CACTAAGT	ACTTAGTG
206	F02	GTCGAAGT	CAGTGAGC	GCTCACTG	230	F05	AGTCCTTC	GAGTCCTA	TAGGACTC
207	G02	TCTCATGC	GTCGAAGT	ACTTCGAC	231	G05	TTAGGAAC	AGTCCTTC	GAAGGACT
208	H02	CAGAAGAA	TCTCATGC	GCATGAGA	232	H05	AAGTCCAT	TTAGGAAC	GTTCCTAA
209	A03	CGGATAGT	CAGAAGAA	TTCTTCTG	233	A06	GAATACGC	AAGTCCAT	ATGGACTT
210	B03	CACGTGAG	CGGATAGT	ACTATCCG	234	B06	TCCAATCA	GAATACGC	GCGTATTC
211	C03	TACGATAC	CACGTGAG	CTCACGTG	235	C06	CGACGGTA	TCCAATCA	TGATTGGA
212	D03	CGCATGCT	TACGATAC	GTATCGTA	236	D06	CATTGCAT	CGACGGTA	TACCGTCG
213	E03	GCTTGCTA	CGCATGCT	AGCATGCG	237	E06	ATCTGCGT	CATTGCAT	ATGCAATG
214	F03	GAACGCAA	GCTTGCTA	TAGCAAGC	238	F06	GTACCTTG	ATCTGCGT	ACGCAGAT
215	G03	ATCTACCA	GAACGCAA	TTGCGTTC	239	G06	GAGCATAC	GTACCTTG	CAAGGTAC
216	H03	CACGAGCT	ATCTACCA	TGGTAGAT	240	H06	TGCTTACG	GAGCATAC	GTATGCTC

 Table 96
 SureSelect XT HS2 Index Primer Pairs 193–240, provided in green 96-well plate

Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
241	A07	AAGAGACA	TGCTTACG	CGTAAGCA	265	A10	CAATGCTG	CATGAATG	CATTCATG
242	B07	TAGCTATG	AAGAGACA	TGTCTCTT	266	B10	CTTGATCA	CAATGCTG	CAGCATTG
243	C07	TCTGCTAC	TAGCTATG	CATAGCTA	267	C10	GCGAATTA	CTTGATCA	TGATCAAG
244	D07	GTCACAGA	TCTGCTAC	GTAGCAGA	268	D10	GTTCGAGC	GCGAATTA	TAATTCGC
245	E07	CGATTGAA	GTCACAGA	TCTGTGAC	269	E10	GCCAGTAG	GTTCGAGC	GCTCGAAC
246	F07	GAGAGATT	CGATTGAA	TTCAATCG	270	F10	AAGGTCGA	GCCAGTAG	CTACTGGC
247	G07	TCATACCG	GAGAGATT	AATCTCTC	271	G10	AGTGAAGT	CACTTATG	CATAAGTG
248	H07	TCCGAACT	TCATACCG	CGGTATGA	272	H10	GTTGCAAG	ATAACGGC	GCCGTTAT
249	A08	AGAGAGAA	TCCGAACT	AGTTCGGA	273	A11	AGCCGGAA	GTTGCAAG	CTTGCAAC
250	B08	GATCGTTA	AGAGAGAA	ттстстст	274	B11	AACAGCCG	AGCCGGAA	TTCCGGCT
251	C08	GCGCTAGA	GATCGTTA	TAACGATC	275	C11	CTAGTGTA	AACAGCCG	CGGCTGTT
252	D08	ATGACTCG	GCGCTAGA	TCTAGCGC	276	D11	GAGGCTCT	CTAGTGTA	TACACTAG
253	E08	CAATAGAC	ATGACTCG	CGAGTCAT	277	E11	CTCCGCAA	GAGGCTCT	AGAGCCTC
254	F08	CGATATGC	CAATAGAC	GTCTATTG	278	F11	CGCTATTG	CTCCGCAA	TTGCGGAG
255	G08	GTCAGAAT	CGATATGC	GCATATCG	279	G11	GTGTTGAG	CGCTATTG	CAATAGCG
256	H08	CATAAGGT	GCACTACT	AGTAGTGC	280	H11	TCACCGAC	GTGTTGAG	CTCAACAC
257	A09	TGTTGGTT	GATTCGGC	GCCGAATC	281	A12	CGGTAATC	TCACCGAC	GTCGGTGA
258	B09	ATACTCGC	TGTTGGTT	AACCAACA	282	B12	GTGACTGC	CGGTAATC	GATTACCG
259	C09	AATGCTAG	ATACTCGC	GCGAGTAT	283	C12	CGACTTGT	GTGACTGC	GCAGTCAC
260	D09	GCCTAGGA	AATGCTAG	CTAGCATT	284	D12	GATAGGAC	CGACTTGT	ACAAGTCG
261	E09	GCAACCGA	GCCTAGGA	TCCTAGGC	285	E12	AAGTACTC	GATAGGAC	GTCCTATC
262	F09	ATACTGCA	GCAACCGA	TCGGTTGC	286	F12	GCTCTCTC	AAGTACTC	GAGTACTT
263	G09	TCTCCTTG	ATACTGCA	TGCAGTAT	287	G12	CTACCAGT	GCTCTCTC	GAGAGAGC
264	H09	CATGAATG	TCTCCTTG	CAAGGAGA	288	H12	GATGAGAT	CTACCAGT	ACTGGTAG

 Table 97
 SureSelect XT HS2 Index Primer Pairs 241–288, provided in green 96-well plate

Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
289	A01	AGATAGTG	GATGAGAT	ATCTCATC	313	A04	AGCTACAT	GATCCATG	CATGGATC
290	B01	AGAGGTTA	AGATAGTG	CACTATCT	314	B04	CGCTGTAA	AGCTACAT	ATGTAGCT
291	C01	CTGACCGT	AGAGGTTA	TAACCTCT	315	C04	CACTACCG	CGCTGTAA	TTACAGCG
292	D01	GCATGGAG	CTGACCGT	ACGGTCAG	316	D04	GCTCACGA	CACTACCG	CGGTAGTG
293	E01	CTGCCTTA	GCATGGAG	CTCCATGC	317	E04	TGGCTTAG	GCTCACGA	TCGTGAGC
294	F01	GCGTCACT	CTGCCTTA	TAAGGCAG	318	F04	TCCAGACG	TGGCTTAG	CTAAGCCA
295	G01	GCGATTAC	GCGTCACT	AGTGACGC	319	G04	AGTGGCAT	TCCAGACG	CGTCTGGA
296	H01	TCACCACG	GCGATTAC	GTAATCGC	320	H04	TGTACCGA	AGTGGCAT	ATGCCACT
297	A02	AGACCTGA	TCACCACG	CGTGGTGA	321	A05	AAGACTAC	TGTACCGA	TCGGTACA
298	B02	GCCGATAT	AGACCTGA	TCAGGTCT	322	B05	TGCCGTTA	AAGACTAC	GTAGTCTT
299	C02	CTTATTGC	GCCGATAT	ATATCGGC	323	C05	TTGGATCT	TGCCGTTA	TAACGGCA
300	D02	CGATACCT	CTTATTGC	GCAATAAG	324	D05	TCCTCCAA	TTGGATCT	AGATCCAA
301	E02	CTCGACAT	CGATACCT	AGGTATCG	325	E05	CGAGTCGA	TCCTCCAA	TTGGAGGA
302	F02	GAGATCGC	CTCGACAT	ATGTCGAG	326	F05	AGGCTCAT	CGAGTCGA	TCGACTCG
303	G02	CGGTCTCT	GAGATCGC	GCGATCTC	327	G05	GACGTGCA	AGGCTCAT	ATGAGCCT
304	H02	TAACTCAC	CGGTCTCT	AGAGACCG	328	H05	GAACATGT	GACGTGCA	TGCACGTC
305	A03	CACAATGA	TAACTCAC	GTGAGTTA	329	A06	AATTGGCA	GAACATGT	ACATGTTC
306	B03	GACTGACG	CACAATGA	TCATTGTG	330	B06	TGGAGACT	AATTGGCA	TGCCAATT
307	C03	CTTAAGAC	GACTGACG	CGTCAGTC	331	C06	AACTCACA	TGGAGACT	AGTCTCCA
308	D03	GAGTGTAG	CTTAAGAC	GTCTTAAG	332	D06	GTAGACTG	AACTCACA	TGTGAGTT
309	E03	TGCACATC	GAGTGTAG	CTACACTC	333	E06	CGTAGTTA	GTAGACTG	CAGTCTAC
310	F03	CGATGTCG	TGCACATC	GATGTGCA	334	F06	CGTCAGAT	CGTAGTTA	TAACTACG
311	G03	AACACCGA	CGATGTCG	CGACATCG	335	G06	AACGGTCA	CGTCAGAT	ATCTGACG
312	H03	GATCCATG	AACACCGA	TCGGTGTT	336	H06	GCCTTCAT	AACGGTCA	TGACCGTT

 Table 98
 SureSelect XT HS2 Index Primer Pairs 289–336, provided in red 96-well plate

Index Primer Pair Plate Maps

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1	9	17	25	33	41	49	57	65	73	81	89
В	2	10	18	26	34	42	50	58	66	74	82	90
С	3	11	19	27	35	43	51	59	67	75	83	91
D	4	12	20	28	36	44	52	60	68	76	84	92
Е	5	13	21	29	37	45	53	61	69	77	85	93
F	6	14	22	30	38	46	54	62	70	78	86	94
G	7	15	23	31	39	47	55	63	71	79	87	95
н	8	16	24	32	40	48	56	64	72	80	88	96

 Table 99
 Plate map for SureSelect XT HS2 Index Primer Pairs 1-96, provided in orange plate

	1	2	3	4	5	6	7	8	9	10	11	12
Α	97	105	113	121	129	137	145	153	161	169	177	185
В	98	106	114	122	130	138	146	154	162	170	178	186
С	99	107	115	123	131	139	147	155	163	171	179	187
D	100	108	116	124	132	140	148	156	164	172	180	188
Е	101	109	117	125	133	141	149	157	165	173	181	189
F	102	1110	118	126	134	142	150	158	166	174	182	190
G	103	111	119	127	135	143	151	159	167	175	183	191
н	104	112	120	128	136	144	152	160	168	176	184	192

	1	2	3	4	5	6	7	8	9	10	11	12
Α	193	201	209	217	225	233	241	249	257	265	273	281
В	194	202	210	218	226	234	242	250	258	266	274	282
С	195	203	211	219	227	235	243	251	259	267	275	283
D	196	204	212	220	228	236	244	252	260	268	276	284
Е	197	205	213	221	229	237	245	253	261	269	277	285
F	198	206	214	222	230	238	246	254	262	270	278	286
G	199	207	215	223	231	239	247	255	263	271	279	287
Н	200	208	216	224	232	240	248	256	264	272	280	288

Table 101 Plate map for SureSelect XT HS2 Index Primer Pairs 193-288, provided in green plate

Table 102 Plate map for SureSelect XT HS2 Index Primer Pairs 289-384, provided in red plate

	1	2	3	4	5	6	7	8	9	10	11	12
Α	289	297	305	313	321	329	337	345	353	361	369	377
В	290	298	306	314	322	330	338	346	354	362	370	378
С	291	299	307	315	323	331	339	347	355	363	371	379
D	292	300	308	316	324	332	340	348	356	364	372	380
Е	293	301	309	317	325	333	341	349	357	365	373	381
F	294	302	310	318	326	334	342	350	358	366	374	382
G	295	303	311	319	327	335	343	351	359	367	375	383
н	296	304	312	320	328	336	344	352	360	368	376	384

Quick Reference Tables for Master Mixes and Source Plates

This section contains copies of the tables for master mix formulations and source plate volumes used in the SureSelect XT HS2 DNA System Protocol using NGS Bravo Option A protocol.

Enzymatic Fragmentation

Table 103 Fragmentation master mix - used on page 50

Reagent	Volume for 1 Library			Ва	sed on N	umber of		ne (µL) s of Samı	oles (1 to	12 Colur	nns)		
		1	2	3	4	5	6	7	8	9	10	11	12
Nuclease-free water	2 µL	42.5	59.5	76.5	97.8	119.0	136.0	153.0	170.0	191.3	208.3	225.3	253.8
5X SureSelect Fragmentation Buffer (blue cap)	2 µL	42.5	59.5	76.5	97.8	119.0	136.0	153.0	170.0	191.3	208.3	225.3	253.8
SureSelect Fragmentation Enzyme (green cap)	1 µL	21.3	29.8	38.3	48.9	59.5	68.0	76.5	85.0	95.6	104.1	112.6	126.9
Total Volume	5 µL	106.3	148.8	191.3	244.5	297.5	340.0	382.5	425.0	478.2	620.7	583.2	634.4

Table 104 Master mix source plate for 00a EnzFrag_XT_HS2_ILM protocol - used on page 50

Master Mix Solution	Position on Source		Vo			er Mix ad Number o	•				g Source nns)	Plate	
	Plate	1	2	3	4	5	6	7	8	9	10	11	12
Fragmentation master mix	Column 1 (A1-H1)	12.5	17.5	22.5	28.8	35.0	40.0	45.8	51.5	57.3	63.0	68.8	75.0

Library Preparation

Table 105 End Repair/dA-Tailing master mix - used on page 58

Reagent	Volume for 1			Ba	ased on N	Number o	Volur of Column	me (µL) s of Samp	oles (1 to	12 Colum	ıns)		
	Library	1	2	3	4	5	6	7	8	9	10	11	12
End Repair-A Tailing Buffer (yellow cap or bottle)	16 µL	204.0	340.0	476.0	612.0	748.0	884.0	1042.7	1201.3	1360.0	1518.7	1677.3	1836.0
End Repair-A Tailing Enzyme Mix (orange cap)	4μL	51.0	85.0	119.0	153.0	187.0	221.0	260.7	300.3	340.0	379.7	419.3	459.0
Total Volume	20 µL	255.0	425.0	595.0	765.0	935.0	1105.0	1303.4	1501.6	1700.0	1898.4	2096.6	2295.0

Table 106 Ligation master mix - used on page 59

Reagent	Volume for 1			В	ased on I	Number o		ne (µL) s of Samp	oles (1 to	12 Colum	ıns)		
	Library	1	2	3	4	5	6	7	8	9	10	11	12
Ligation Buffer (purple cap or bottle)	23 µL	293.3	488.8	684.3	879.8	1075.3	1270.8	1515.1	1759.5	2003.9	2248.3	2492.6	2737.0
T4 DNA Ligase (blue cap)	2 µL	25.5	42.5	59.5	76.5	93.5	110.5	127.5	153.0	174.3	195.5	216.8	238.0
Total Volume	25 µL	318.8	531.3	743.8	956.3	1168.8	1381.3	1642.6	1912.5	2178.2	2443.8	2709.4	2975.0

Table 107 Adaptor Oligo Mix dilution - used on page 59

Reagent	Volume for 1			Ba	sed on N	umber of		ne (µL) s of Samp	oles (1 to	12 Colun	nns)		
	Library	1	2	3	4	5	6	7	8	9	10	11	12
Nuclease-free water	2.5 µL	42.5	63.8	85.0	106.3	127.5	148.8	170.0	191.3	212.5	233.8	255.0	276.3
SureSelect XT HS2 Adaptor Oligo Mix (white cap)	5 µL	85.0	127.5	170.0	212.5	255.0	297.5	340.0	382.5	425.0	467.5	510.0	552.5
Total Volume	7.5 µL	127.5	191.3	255.0	318.8	382.5	446.3	510.0	573.8	637.5	701.3	765.0	828.8

Table 108 Master mix source plate for 01 LibraryPrep_XT_HS2_ILM protocol - used on page 60

Master Mix Solution	Position on Source		V		L) of Mas ased on N		•		9			ate	
	Plate	1	2	3	4	5	6	7	8	9	10	11	12
End Repair-dA Tailing master mix	Column 1 (A1-H1)	31.0	52.0	73.0	94.0	115.0	136.0	158.8	182.0	205.8	230.0	254.8	280.0
Ligation master mix	Column 2 (A2-H2)	36.0	62.0	88.0	114.0	140.0	166.0	195.7	226.5	258.3	291.1	325.1	360.0
Adaptor Oligo Mix dilution	Column 3 (A3-H3)	15.0	22.5	30.0	37.5	45.0	52.5	60.6	68.8	76.9	85.0	93.1	101.3

Pre-Capture PCR

Table 109 Pre-Capture PCR Master Mix - used on page 66

Reagent	Volume for 1			Ba	ased on N	umber of		ne (µL) s of Sam	ples (1 to	12 Colui	mns)		
	Library	1	2	3	4	5	6	7	8	9	10	11	12
5× Herculase II Buffer with dNTPs (clear cap)	10 µL	170	255	340	425	510.0	574	656.0	738.0	820.0	902.0	984.0	1066
Herculase II Fusion DNA Polymerase (red cap)	1 μL	17	25.5	34	42.5	51.0	57.4	65.6	73.8	82.0	90.2	98.4	106.6
Total Volume	11 µL	187	280.5	374	467.5	561.0	631.4	721.6	811.8	902.0	992.2	1082.4	1172.6

Table 110 Master mix source plate for 03 Pre-CapPCR_XT_HS2_ILM protocol - used on page 66

Master Mix Solution	Position on Source		Vo	••	•					Processin 12 Colur	-	Plate	
	Plate	1	2	3	4	5	6	7	8	9	10	11	12
Pre-Capture PCR Master Mix	Column 2 (A2-H2)	22	33	44	55	66	77	88	99	110	121	132	143

Hybridization

Table 111 Block master mix - used on page 95

Reagent	Volume for 1	_		Ba	sed on Ni	umber of		ne (µL) s of Samp	oles (1 to	12 Colun	nns)		
	Library	1	2	3	4	5	6	7	8	9	10	11	12
Nuclease-free water	2.5 µL	31.9	53.1	74.4	95.6	116.9	138.1	161.1	184.2	207.2	230.2	253.2	276.3
SureSelect XT HS2 Blocker Mix (blue cap)	5.0 µL	63.8	106.3	148.8	191.3	233.8	276.3	322.3	368.3	414.4	460.4	506.5	552.5
Total Volume	7.5 µL	95.7	159.4	223.2	286.9	350.7	414.4	483.4	552.5	621.6	690.6	759.7	828.8

Reagent	Volume for 1 Library			Ba	ased on N		Volu	i ze <3.0 Ime (µL) Is of Sam		12 Colun	nns)		
		1	2	3	4	5	6	7	8	9	10	11	12
Nuclease-free water	7.0 µL	89.3	148.8	208.3	267.8	327.3	401.6	471.0	540.5	609.9	679.3	748.7	818.1
RNase Block (purple cap)	0.5 µL	6.4	10.6	14.9	19.1	23.4	28.7	33.6	38.6	43.6	48.5	53.5	58.4
SureSelect Fast Hybridization Buffer	6.0 µL	76.5	127.5	178.5	229.5	280.5	344.3	403.8	463.3	522.8	582.3	641.8	701.3
Probe (with design <3.0 Mb)	2.0 µL	25.5	42.5	59.5	76.5	93.5	114.8	134.6	154.4	174.3	194.1	213.9	233.8
Total Volume	15.5 µL	197.7	329.4	461.2	592.9	724.7	889.4	1043.0	1196.8	1350.6	1504.2	1657.9	1811.6

Table 112 Probe Hybridization master mix for Probes <3 Mb, 8 rows of wells - used on page 96

Table 113 Probe Hybridization master mix for Probes ≥3 Mb, 8 rows of wells - used on page 96

Reagent	Volume for 1 Library			Ва	ased on N		Volu	ze ≥ 3.0 me (µL) is of Sam		12 Colun	ıns)		
		1	2	3	4	5	6	7	8	9	10	11	12
Nuclease-free water	4.0 µL	51.0	85.0	119.0	153.0	187.0	229.5	269.2	308.8	348.5	388.2	427.8	467.5
RNase Block (purple cap)	0.5 µL	6.4	10.6	14.9	19.1	23.4	28.7	33.6	38.6	43.6	48.5	53.5	58.4
SureSelect Fast Hybridization Buffer	6 µL	76.5	127.5	178.5	229.5	280.5	344.3	403.8	463.3	522.8	582.3	641.8	701.3
Probe (with design ≥3.0 Mb)	5.0 µL	63.8	106.3	148.8	191.3	233.8	286.9	336.5	386.0	435.6	485.2	534.8	584.4
Total Volume	15.5 µL	197.7	329.4	461.2	592.9	724.7	889.4	1043.1	1196.7	1350.5	1504.2	1657.9	1811.6

Table 114 Probe Hybridization master mix for Probes <3 Mb, single row of wells - used on page 97

Reagent	Volume for 1 Library			Ва	sed on N		r get siz Volur f Columns	ne (µL)		12 Colur	nns)		
		1	2	3	4	5	6	7	8	9	10	11	12
Nuclease-free water	7	10.5	17.5	24.5	31.5	38.5	49.0	57.2	65.3	73.5	81.7	89.8	98.0
RNase Block (purple cap)	0.5	0.8	1.3	1.8	2.3	2.8	3.5	4.1	4.7	5.3	5.8	6.4	7.0
SureSelect Fast Hybridization Buffer	6.0	9.0	15.0	21.0	27.0	33.0	42.0	49.0	56.0	63.0	70.0	77.0	84.0
Probe (with design <3 Mb)	2.0	3.0	5.0	7.0	9.0	11.0	14.0	16.3	18.7	21.0	23.3	25.7	28.0
Total Volume	15.5	23.3	38.8	54.3	69.8	85.3	108.5	126.6	144.7	162.8	180.8	198.9	217.0

Reagent	Volume for 1 Library		Target size ≥3.0 Mb Volume (μL) Based on Number of Columns of Samples (1 to 12 Columns)										
		1	2	3	4	5	6	7	8	9	10	11	12
Nuclease-free water	4.0	6.0	10.0	14.0	18.0	22.0	28.0	32.7	37.3	42.0	46.7	51.3	56.0
RNase Block (purple cap)	0.5	0.8	1.3	1.8	2.3	2.8	3.5	4.1	4.7	5.3	5.8	6.4	7.0
SureSelect Fast Hybridization Buffer	6.0	9.0	15.0	21.0	27.0	33.0	42.0	49.9	56.0	63.0	70.0	77.0	84.0
Probe (with design ≥3 Mb)	5.0	7.5	12.5	17.5	22.5	27.5	35.0	40.8	46.7	52.5	58.3	64.2	70.0
Total Volume	15.5	23.3	38.8	54.3	69.8	85.3	108.5	126.6	144.7	162.8	180.8	198.9	217.0

Table 115 Probe Hybridization master mix for Probes ≥3 Mb, single row of wells - used on page 97

Table 116 Master mix source plate for 07 Hyb_XT_HS2_ILM protocol - used on page 98

Master Mix Solution	Position on Source		Volume (µL) of Master Mix added per Well of Processing Source Plate Based on Number of Columns in the Run (1 to 12 Columns)											
	Plate	1	2	3	4	5	6	7	8	9	10	11	12	
Block master mix	Column 1 (A1-H1)	11.0	19.0	27.0	34.9	42.9	50.9	59.5	68.1	76.8	85.4	94.0	102.7	
Probe Hybridization master mix	Column 2 (A2-H2)	23.3	38.8	54.3	69.8	85.3	108.5	126.6	144.7	162.8	180.8	198.9	217.0*	

* Wells containing 217.0 μ L are nearly full. Pipette carefully to avoid introducing bubbles to the bottom of the wells. Handle the plate with care to avoid spillage. Do not centrifuge.

Hybrid Capture and Washing

Table 117 Magnetic bead washing mixture - used on page 104

Reagent	Volume for 1			Ba	sed on N	umber of		Volume (μL) Columns of Samples (1 to 12 Columns)						
	Library	1	2	3	4	5	6	7	8	9	10	11	12	
Dynabeads MyOne Streptavidin T1 bead suspension	50 µL	425	825	1225	1650	2050	2500	2900	3350	3750	4200	4600	5000	
SureSelect Binding Buffer	200 µL	1700	3300	4900	6600	8200	10000	11600	13400	15000	16800	18400	20000	
Total Volume	250 µL	2125	4125	6125	8250	10260	12500	14500	16750	18750	21000	23000	25000	

Reagent	Volume for 1		Volume (µL) Based on Number of Columns of Samples (1 to 12 Columns)								nns)			
Library	1	2	3	4	5	6	7	8	9	10	11	12		
SureSelect Binding Buffer	200 µL	1700	3300	4900	6600	8200	10000	11600	13400	15000	16800	18400	20000	

Table 118 Resuspension volumes for washed bead suspension - used on page 104

Post-Capture PCR

Table 119 Post-Capture PCR master mix - used on page 113

Reagent	Volume for 1	Volume (μL) Based on Number of Columns of Samples (1 to 12 Columns)											
	Library	1	2	3	4	5	6	7	8	9	10	11	12
5× Herculase II Reaction Buffer with dNTPs (clear cap)	10 µL	170	255	340	425	510	595	683.3	772.5	862.5	953.3	1045	1137.5
SureSelect Post-Capture Primer Mix (clear cap)	1 µL	17.0	25.5	34.0	42.5	51.0	59.5	68.3	77.3	86.3	95.3	104.5	113.8
Herculase II Fusion DNA Polymerase (red cap)	1μL	17.0	25.5	34.0	42.5	51.0	59.5	68.3	77.3	86.3	95.3	104.5	113.8
Total Volume	12.0 µL	204.0	306.0	408.0	510.0	612.0	714.0	819.9	927.1	1035.1	1143.9	1254.0	1365.1

Table 120 Master mix source plate for 10 Post-CapPCR_XT_HS2_ILM protocol - used on page 114

Master Mix Solution	Position on Source		Volume (µL) of Master Mix added per Well of Selected Processing Source Plate Based on Number of Columns in the Run (1 to 12 Columns)									Plate	
	Plate	1	2	3	4	5	6	7	8	9	10	11	12
Post-Capture PCR Master Mix	Column 3 (A3-H3)	23.0	36.0	49.0	62.0	75.0	88.0	101.0	114.0	127.0	140.0	153.0	166.0

Quick Reference Tables for Other Reagent Volumes

This section contains tables that summarize the gDNA input volumes, volume of XT HS2 Index Primer Pair in the primer plate, volumes used for reservoirs of water and ethanol, and volumes of AMPure XP beads used in the automation protocols.

Table 121 Genomic DNA Input Volumes

Genomic DNA Input (100–200 ng)	Volume for 1 Library
Enzymatic fragmentation	15 µL
Mechanical shearing	50 µL

Table 122 XT HS2 Index Primer Pairs Volume on Primer Plate

Reagent	Volume for 1 Library
XT HS2 Index Primer Pairs	5 µL

Table 123 AMPure XP Bead Volumes for AMPure XP Protocols

Protocol or Runset	Volume of AMPure Beads per Well *
LibraryPrep_XT_HS2_ILM	80 µL
AMPureXP_XT_HS2_ILM (Pre-Cap PCR - SinglePlex)	50 µL
AMPureXP_XT_HS2_ILM (Pre-Cap PCR - MultiPlex)	50 µL
AMPureXP_XT_HS2_ILM (Concentration of Pool)	180 µL
AMPureXP_XT_HS2_ILM (Post-Capture PCR)	50 µL

* When preparing the plates of AMPure XP beads, fill the columns of the reservoir with enough of the bead suspension to cover the pyramid-shaped wells

Table 124 Water and Ethanol Volumes for AMPure XP Protocols

Reagent	Volume per Rerservoir
70% ethanol in Agilent deep well reservoir	50 mL
Nuclease-free water in Agilent shallow well reservoir	30 mL

Troubleshooting Guide

If recovery of gDNA from samples is low

- Using excess tissue for gDNA isolation can reduce yield. Use only the amount of each specific tissue type recommended by the gDNA isolation protocol.
- ✓ Tissue sample lysis may not have been optimal during gDNA isolation. Monitor the extent of sample lysis during the Proteinase K digestion at 56°C by gently pipetting the digestion reaction every 20–30 minutes, visually inspecting the solution for the presence of tissue clumps. If clumps are still present after the 1-hour incubation at 56°C, add another 10 µL of Proteinase K and continue incubating at 56°C, with periodic mixing and visual inspections, for up to two additional hours. When the sample no longer contains clumps of tissue, move the sample to room temperature until lysis is complete for the remaining samples. Do not over-digest. Individual samples may be kept at room temperature for up to 2 hours before resuming the protocol. Do not exceed 3 hours incubation at 56°C for any sample.

If yield of pre-capture libraries is low

- The library preparation protocol includes specific thawing, temperature control, pipetting, and mixing instructions which are required for optimal performance of the highly viscous buffer and enzyme solutions used in the protocol. Be sure to adhere to all instructions when setting up the reactions.
- ✓ PCR cycle number may require optimization. Repeat library preparation for the sample, increasing the pre-capture PCR cycle number by 1 to 2 cycles. If a high molecular weight peak (>500 bp) is observed in the electropherogram for a sample with low yield, the DNA may be overamplified. Repeat library preparation for the sample, decreasing the pre-capture PCR cycle number by 1 to 3 cycles.
- DNA isolated from degraded samples, including FFPE tissue samples, may be over-fragmented or have modifications that adversely affect library preparation processes. Use the Agilent NGS FFPE QC Kit to determine the precise quantity of amplifiable DNA in the sample and allow direct normalization of input DNA amount.
- ✓ Performance of the solid-phase reversible immobilization (SPRI) purification step may be poor. Verify the expiration date for the vial of AMPure XP beads used for purification. Adhere to all bead storage and handling conditions recommended by the manufacturer. Ensure that the beads are kept at room temperature for at least 30 minutes before use. Use freshly-prepared 70% ethanol for each SPRI procedure.

If solids observed in the End Repair-A Tailing Buffer

Vortex the solution at high speed until the solids are dissolved. The observation of solids when first thawed does not impact performance, but it is important to mix the buffer until all solutes are dissolved.

If pre-capture library fragment size is larger than expected in electropherograms

- Shearing may not be optimal. For intact, high-quality DNA samples, ensure that mechanical shearing is completed using the two-round shearing protocol provided, including all spinning and vortexing steps.
- When using the mechanical shearing method, any bubbles present on the microTUBE filament may disrupt complete shearing. Spin the microTUBE for 30 seconds before the first round of shearing to ensure that any bubbles are released.

If pre-capture library fragment size is different than expected in electropherograms

- ✓ FFPE DNA pre-capture libraries may have a smaller fragment size distribution due to the presence of DNA fragments in the input DNA that are smaller than the target DNA shear size.
- ✓ DNA fragment size selection during SPRI purification depends upon using the correct ratio of sample to AMPure XP beads. When preparing the AMPure XP bead plate for pre-capture purification, mix the beads until the suspension appears homogeneous and consistent in color before adding the bead suspension to the shallow well reservoir. After preparation of the AMPure XP bead plate, seal the plate and store at 4°C until needed.

If low molecular weight adaptor-dimer peak is present in pre-capture library electropherograms

- ✓ The presence of a low molecular weight peak, in addition to the expected peak, indicates the presence of adaptor-dimers in the library. It is acceptable to proceed to target enrichment with library samples for which adaptor-dimers are observed in the electropherogram at low abundance, similar to the samples analyzed on page 76. The presence of excessive adaptor-dimers in the samples may be associated with reduced yield of pre-capture libraries.
- ✓ For whole-genome sequencing (not specifically supported by this protocol), samples with an adaptor-dimer peak must be subjected to an additional round of SPRI-purification. To complete, first dilute the sample to 50 µL with nuclease free water, then run the AMPureXP_XT_HS2_ILM (Pre-Capture PCR) protocol.

If yield of post-capture libraries is low

- ✓ PCR cycle number may require optimization. Repeat library preparation and target enrichment for the sample, increasing the post-capture PCR cycle number by 1 to 2 cycles.
- ✓ The RNA Probe used for hybridization may have been compromised. Verify the expiration date on the Probe vial or Certificate of Analysis. Adhere to the recommended storage and handling conditions. Ensure that the Probe Hybridization Mix is kept on ice until it is dispensed into the master mix source plate, as directed on **page 96**, and that solutions containing the Probe are not held at room temperature for extended periods.

If post-capture library fragment size is different than expected in electropherograms

✓ DNA fragment size selection during SPRI purification depends upon using the correct ratio of sample to AMPure XP beads. When preparing the AMPure XP bead plate for post-capture purification, mix the beads until the suspension appears homogeneous and consistent in color before adding the bead suspension to the shallow well reservoir. After preparation of the AMPure XP bead plate, seal the plate and store at 4°C until needed.

If low % on-target is observed in library sequencing results

Minimize the amount of time that hybridization reactions are exposed to RT conditions during hybridization setup. Locate a thermal cycler in close proximity to the Bravo NGS Bravo to retain the 65°C sample temperature during transfer step (step 27 on page 102).

If low uniformity of coverage with high AT-dropout is observed in library sequencing results

- High AT-dropout may indicate that hybridization conditions are too stringent to obtain the desired level of coverage for AT-rich targets.
 - For libraries target-enriched using the SureSelect XT HS Human All Exon V8 Probe or SureSelect XT HS PreCap Human All Exon V8 Probe and the hybridization program in Table 52 on page 94 (including segment with one-hour incubation at 65°C), repeat target enrichment using the hybridization program in Table 53 on page 94 (without the one-hour incubation at 65°C segment).
 - For all other probes, repeat target enrichment at lower stringency using a modified thermal cycler program for hybridization, reducing the hybridization temperature in segments 4 and 5 from 65°C to 62.5°C or 60°C (see **Table 53** on page 94).

In This Book

This guide contains information to run the SureSelect XT HS2 protocol for DNA, with optional pre-capture pooling, using automation protocols provided with the Agilent NGS Bravo Option A.

© Agilent Technologies, Inc. 2022

Version A0, March 2022

G9985-90020

